
CMPT 165
INTRODUCTION TO THE

INTERNET AND THE

WORLD WIDE WEB

Unit 8
HTML Forms and Basic CGI

Copyright © 2014 by Stephen Makonin
Slides based on course material © SFU
Icons © their respective owners 1

Learning Objectives
In this unit you will learn the following.

• Understand the actions performed by the client and
the server when a dynamic request is made.

• Create HTML forms to capture user input.
• Create Python programs to generate web pages,

using a user’s input.
• Convert the types of values in Python as appropriate

for calculations and output.

2Copyright © 2014 by Stephen Makonin

Topics

1. Dynamic Web Pages, CGI
2. HTML Forms
3. HTML Input Tags
4. Python CGI Library
5. Add Script In-Class Exercise
6. Divide Script In-Class Exercise

3Copyright © 2014 by Stephen Makonin

Fetching, Step 1

URL: http://cmpt165.csil.sfu.ca/~smakonin/iphone.html

The web browser contacts the server specified in the
Server (host + domain), cmpt165.csil.sfu.ca.
It asks for the file with path:

/home/smakonin/public_html/iphone.html
4Source: CMPT 165 Course Study Guide, p. 23 Copyright © 2014 by Stephen Makonin

http://cmpt165.csil.sfu.ca/~smakonin/iphone.html

Fetching, Step 2

The server responds with an OK message, indicating that
the page has been found and will be sent. It indicates that
the MIME type of the file is text/html—it’s an HTML page.
Then it sends the contents of the file, so the browser can
display it.

5Source: CMPT 165 Course Study Guide, p. 23 Copyright © 2014 by Stephen Makonin

Fetching, Step 3

The browser notices that the web page contains an image
with URL:
http://cmpt165.csil.sfu.ca/∼smakonin/iphone.png

It asks for the file with path:
/home/smakonin/public_html/iphone.png

6Source: CMPT 165 Course Study Guide, p. 23 Copyright © 2014 by Stephen Makonin

Fetching, Step 4

The server again responds with an OK and gives the MIME
type image/png, which indicates a JPEG format image.
Then it sends the actual contents of the image file.

Finally the full webpage is displayed!
7Source: CMPT 165 Course Study Guide, p. 23 Copyright © 2014 by Stephen Makonin

Requesting Static HTML

8Copyright © 2014 by Stephen Makonin

• Static means the HTML never changes
• unless you upload a new version

• Web server simple reads file’s contents then sends
• Files end with the extension .html (usually)

Source: CMPT 165 Course Study Guide, p. 121

WHAT IF WE HAVE LOTS OF PAGES THAT HAVE THE
SAME STRUCTURE, BUT ONLY CONTACT CHANGES?

https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003
https://www.sparkfun.com/products/13003

Requesting Dynamic HTML

9Copyright © 2014 by Stephen Makonin
Source: CMPT 165 Course Study Guide, p. 122

CGI, Web Scripts

10Copyright © 2014 by Stephen Makonin
Source: CMPT 165 Course Study Guide, p. 122

def. Common Gateway Interface, an interface programming
languages can use to produce dynamic HTML.
• On the web server we have here.py:

• Nice and easy with python, like printing text to the
screen.

The MIME Type

Blank line mean no more
header information
HTML data to follow.

print	
 ≡	
 print	
 ""

http://cmpt165.csil.sfu.ca/~smakonin/here.py

CGI, Web Scripts
• Server is configured to know that file with extension:

• .html send to clients
• .py run and send output to client
• .cgi run and send output to client

• e.g. compiled C/C++
• Very common in the “good old days”.

• browser doesn’t care where the HTML came from
• it just displays it

11Copyright © 2014 by Stephen Makonin

Content Type
print	
 "Content-­‐type:	
 text/html"	

• Again, a way for the browser to determine the content
being returned from a request.

• BUT, the content	
 type can be any valid MIME.
• If you have a sophisticated program you can generate an

image (e.g. chart, graph) on the fly and that returns
binary image code. The MIME time might look like:

print	
 "Content-­‐type:	
 image/png"
12Copyright © 2014 by Stephen Makonin

Generating Content
• Any code that runs using command line Python
• Will also run when used as CGI Python
• So the following statements would work (plain.py):

print	
 "Content-­‐type:	
 text/plain"	

print	

age	
 =	
 2	

print	
 age	
 *	
 5	

print	
 "The	
 answer	
 is:	
 ",	
 age	

print	
 age	
 **	
 age

13Copyright © 2014 by Stephen Makonin

http://cmpt165.csil.sfu.ca/~smakonin/plain.py

HTML Forms

14Copyright © 2014 by Stephen Makonin

<form>	
 …	
 </form>	

• Forms are a block element that contain other elements.
• There are special elements to capture user input.
• When the form is filled the user will click on a button

that will submit the form data to a CGI script.
• Button names are commonly called:

• submit, login, save, update

Form Attributes

15Copyright © 2014 by Stephen Makonin

action: action to be performed when the form is
submitted, usually the relative URL of the CGI script.

<form	
 action="action.py">	

method: specifies the HTTP method (GET or POST) to
be used when submitting the forms

<form	
 action="action.py"	
 method=“POST">	

name: each input field must have a name attribute.

<input	
 type="text"	
 name="lastname"	
 value="Mouse">	

Get or Set?

16Copyright © 2014 by Stephen Makonin

You can use GET (the default method):
• Passive submission (like a search engine query).
• DO NOT use with sensitive information.
• Form data will be visible in the page address.
• Browsers set size limitations for URL size.

You should use POST:
• Best for sensitive information (password).
• This means data can be with encrypted (https://).
• Submitted data is not visible in the page address.

http://www.myserver.com/forms/action.py?firstname=Mickey&lastname=Mouse

A way to group common fields in long compacted forms.
The design principles of contrast and proximity?

<form	
 action="action_page.py">	

<fieldset>	
 	

<legend>Personal	
 information:</legend>	

…	
 	

</fieldset>	

</form>

Grouping Form Data

17Copyright © 2014 by Stephen Makonin

Text Input

18Copyright © 2014 by Stephen Makonin

An input field for one line/word/phrase of text.

<form	
 action="action_page.py">	

First	
 name:
	

<input	
 type="text"	
 name="firstname"	
 />	

	

Last	
 name:
	

<input	
 type="text"	
 name="lastname"	
 />	

</form>	

Password Input

19Copyright © 2014 by Stephen Makonin

Similar to text input but the characters are masked (shown
as asterisks or circles).

<form	
 action="action_page.py">	

User	
 name:
	

<input	
 type="text"	
 name="username"	
 />	

	

User	
 password:
	

<input	
 type="password"	
 name="psw"	
 />	

</form>	

Submits the form to the .

<form	
 action="action_page.py">	

…	

Last	
 name:
	

<input	
 type="text"	
 name=“lastname"	
 value="Mouse"	
 />	

	

<input	
 type="submit"	
 value="Submit"	
 />	

</form>	

Submit Button

20Copyright © 2014 by Stephen Makonin

Used to limit the selection of options to one option.

<form	
 action="action_page.py">	

<input	
 type="radio"	
 name="gender"	
 value="m"	
 checked	
 />	

Male	

	

<input	
 type="radio"	
 name="gender"	
 value="f"	
 />	

Female	

</form>	

Radio Buttons

21Copyright © 2014 by Stephen Makonin

Used to check off zero or more options.

<form	
 action="action_page.py">	

<input	
 type="checkbox"	
 name="vehicle"	
 value="Bike"	
 />	

I	
 have	
 a	
 bike	

	

<input	
 type="checkbox"	
 name="vehicle"	
 value="Car"	
 />	

I	
 have	
 a	
 car	
 	

</form>	

Checkbox

22Copyright © 2014 by Stephen Makonin

Select one option from a drop-down list of options.

<select	
 name="cars">	

<option	
 value="volvo">Volvo</option>	

<option	
 value="saab">Saab</option>	

<option	
 value="fiat"	
 selected>Fiat</option>	

<option	
 value="audi">Audi</option>	

</select>	

Select - Option

23Copyright © 2014 by Stephen Makonin

Text Area

24Copyright © 2014 by Stephen Makonin

Enter in large amount of multi-line text.

<textarea	
 name="message"	
 rows="10"	
 cols="30">	

The	
 cat	
 was	
 playing	
 in	
 the	
 garden.	

</textarea>	

A non-submit mainly used for JavaScript coding.

<input	
 type="button"	
 onclick="alert('Hello	
 World!')"	

value="Click	
 Me!"	
 />	

Generic Button

25Copyright © 2014 by Stephen Makonin

Input Attributes

26Copyright © 2014 by Stephen Makonin

value: specifies the initial/default value for an input field.

readonly: specifies that the input field cannot be
changed.

disabled: specifies that the input field is disabled
meaning they are un-usable and un-clickable and will not
be submitted.

size: specifies the size (in characters) for the input field.

maxlength: specifies the maximum allowed length for
the input field.

Python CGI

27Copyright © 2014 by Stephen Makonin

• A library to get the HTML form data.
library def. an optional set of functions that can be
loaded into memory and used.

library

get the form data

get the data for the
HTML element of
the given name.

Making the Connections

28Copyright © 2014 by Stephen Makonin

form.py

form.html

How is data linked from
HTML to Python?

Through the action and
name attributes of the

form and input elements.

Form Data Conditions

29Copyright © 2014 by Stephen Makonin

3 conditions to check when programming dynamic HTML:
1. No Form Input

• Browser is requesting the form for the first time (self-
contained scripts, see add.py example).

2. Invalid Form Input
• Some or all form data is invalid.
• Send error back to browser so that data can be fixed.

3. Valid Form Input
• All form data is OK, process, send results back to the

browser.

Add Script Demo

Let us create a self-contained web script that can add 2
integers together from form input and output the sum.
Only one python script is needed. No HTML or CSS files
are needed.

30Copyright © 2014 by Stephen Makonin

Divide Script Demo

Take the add.py script and rename it to divide.py. Modify
it so that instead of adding 2 integers in now divides 2
integers. Make sure that the output is a float and that you
handle division by zero errors gracefully.

31Copyright © 2014 by Stephen Makonin

http://www.cs.sfu.ca/CourseCentral/165/smakonin/examples/python/add.py

Summary
• Compared static HTML to dynamic HTML.
• Learnt about HTML form tags.
• Learnt about using Python as CGI scripts.
• Create simple forms to collect user data.
• Create scripts to process data and return a result.

Next Unit: look at advanced web programming.

32Copyright © 2014 by Stephen Makonin

33

QUESTIONS?

Copyright © 2014 by Stephen Makonin

