Introduction to the Internet

September 7, 2005 Lecture 1

1969 to Present

First 4 Nodes in the "internet"

"Map" of the internet, Young Hyun , from CAIDA

ARPANET

- J. Licklider of MIT first head of ARPA, Advanced Research Projects Agency
 - Proposed idea of "galactic network" of computers
- First 4 nodes in 1969 connecting SRI, UCSB, UCLA, and Utah
- ARPANET was the first "internet"
 - Connected research institutions and military bases
- Many other networks came along: EUNet, NSFNet, UseNet, etc.

Standardization with TCP/IP

- TCP/IP developed in 1974 Stanford and ARPA
- TCP/IP: Transmission Control Protocol/ Internet Protocol
- All these computers and networks need a way to "talk" to each other
- ARPANET adopted (finally) TCP/IP in 1982

ARPANET 1980

Internet Grows

- NSFNet provided backbone in US
 - Only for research and education
- By 1986, 5000 hosts online
- By 1987, 28,000 hosts online
- Excluding commercial uses from NSFNet led to creation of private internet service providers

ARPANET Dies

1989 300,000 hosts online

- 1990 ARPANET transfers to NSFNet
- 1991 NSFNet allows commercial users
- 1991 WWW is released

How Does the Internet Work?

Unit 1

What is the Internet?

- HUGE network of connected computers
- Each computer must be connected to at least one other

Internet Organization

- Personal computers generally connected to one computer, its Gateway
- Gateway probably on a high speed connection to a Backbone
- Backbones form the core of the Internet infrastructure
 - Usually optical fiber

Worldcom US Backbone

How does it get from there to here?

Computers in the Internet

- Personal Computers using the Internet
 - Home users
 - Computers in labs
- Routers move Internet traffic
 - Send data from one location to another
- Servers serve the Internet
 - Web servers
 - Email servers

Routing Internet Traffic

- Routers determine where information goes
- Information broken into small chunks called packets
- Packets are sent by the fastest route
- Can move information around broken sections of the Internet
- Not all packets are sent by the same route

Servers

- Servers run special software:
 - Apache
- Usually bigger and faster than home computers
- Typically provide a service:
 - Email
 - Web servers
 - File storage

Protocols

- Protocols dictate how a client (like a home PC) and a server talk to each other and transfer information
- TCP/IP is an example of a protocol
- Web pages are transferred using HTTP
 - HyperText Transfer Protocol
- Other protocols involve those for:
 - Email
 - Instant Messaging
 - FTP –File Transfer Protocol
 - Gaming

How Web Pages Travel

- URL Uniform Resource Locator
 - Internet "address"
- http://www.sfu.ca
- http://www.cs.sfu.ca/CC/165/sbrown1/
- https://my.sfu.ca
- ftp://ftp.mozilla.org/pub/mozilla/releases

Which Protocol?

- http at the beginning of a URL denotes using the HTTP protocol
 - http://www.sfu.ca
- https denotes using a secure HTTP protocol
 - Information is encrypted so that sensitive information is protected, like passwords
 - https://my.sfu.ca
- ftp is usually for downloading files from a server
 - Uses the ftp protocol
 - ftp://ftp.mozilla.org/pub/mozilla/releases
- The protocol is indicated by its scheme

Parts of a URL

http://www.cs.sfu.ca/CC/165/sbrown1/index.html

Scheme: http

Server: www.cs.sfu.ca

Path: CC/165/sbrown1/index.html

MIME Types

- Pretty much any type of data can be transmitted via HTTP
 - Web pages
 - Graphics : GIF, JPG, PNG, etc.
 - Video files
 - Audio files
- Web browsers handle all these files
 - If it can open it (like a webpage) it will
 - Other files, like MP3s or PDFs it will tell the appropriate program to handle these

File Extensions Won't Work

- If you are used to using Windows or Linux, you may be used to seeing file extensions
- File extensions denote the type of file it is
 - doc indicates MS Word file
 - txt indicates a text file
- Not all systems use file extensions
- The browser may not know the file name when the data is sent

Use MIME types

- MIME: Multipurpose Internet Mail Extensions
 - Serves same purpose as a file extension
- Made up of 2 parts:
 - Type: general type of information, such as video, image, text
 - Subtype: Specific kind of information
- GIF: type of image file
 - image/gif

Why Internet Explorer is Bad

- Doesn't handle MIME types correctly
- Part of the reason it's not suggested for this course

How MIME Type is Determined

- Usually based on the file extension
- Some servers are different
- Just because the MIME is based on the file extension, remember it is not the same thing!

How is a Web Page Fetched?

Suppose we want to see http://www.sfu.ca/about/index.html

And it has a graphic on the page is stored at http://www.sfu.ca/hp/images/sfu.jpg

Fetching a Web Page

- 1. Browser contacts www.sfu.ca and asks for the file with path /about/index.html
- Server responds with an "OK", indicates that the MIME type is text/html, and sends the contents of the page
- 3. Browser still needs graphic, so contacts www.sfu.ca again and asks for / hp/images/sfu.jpg
- 4. Server again responds with an "OK", gives the MIME type image/jpeg, then sends the image file

Questions?