Graphics and Images

September 28, Unit 3

Computer Graphics

- "Computer graphics refers to using a computer to create or manipulate any kind of picture, image, or diagram."
- Typically you manipulate an image on your computer with a graphics editing program
 - MS Paint
 - Adobe Photoshop
 - GIMP
 - Etc.

Bitmapped Graphics

- There are two basic types of graphics:
 - Bitmapped and
 - Vector
- Bitmapped graphics are much more common
- Often they are called raster graphics
- When you create a bitmapped graphic you are basically creating a bunch of colored dots

Bitmapped Graphics, cont.

- The bitmapped graphic is stored as an array of dots, or pixels
- Each pixel gets assigned a specific color
- The more pixels you have, the more detailed the image can be
 - Imagine only have one pixel, all you get is a dot
- Some common bitmap graphics programs are:
 - Photoshop
 - Paint Shop Pro
 - GIMP
 - Photo-Paint
 - Graphic Converter
- These are paint programs

Exaggerated Example of a Bitmap Image

Vector Graphics

- The second major type of computer graphics
- Vector graphics are created and manipulated using drawing programs (as opposed to paint programs for bitmapped graphics)
- Instead of using pixels to describe the image, it describes the image using shapes
 - Circles
 - Lines
 - Curves
- Also has to store the color of these shapes
- A verbal example would be something like:
 - "A yellow circle with a center here and a radius of x, a purple line from here to here"

Vector Graphics, cont.

- The programs used with vector graphics are drawing programs
- Some of these programs include:
 - Corel Draw
 - Adobe Illustrator
 - Acrobat
- Most of these programs allow the use of bitmapped images as part of a vector image
 - Does not make them paint programs
 - Bitmaps are a type of object (like a circle) that can be inserted into a vector image

Bitmap vs. Vector Images

- Bitmap and vector images are obviously different
- Both have strengths and weaknesses
- They don't manipulate images in the same way
- They don't store images in the same way
- The images are edited differently

Bitmap Images

- Very flexible
 - Any image can be represented (with enough pixels)
- Created by scanners, digital cameras, and other similar devices
- Used most commonly, especially on the web
- Can be displayed directly on your computer screen if 1 image pixel is the same size as 1 screen pixel
- Takes a lot of memory
 - The color of each pixel must be stored
 - Can be compressed

Vector Images

- Easy to change parts of the image since each part is stored as a different shape
- Can manipulate the image smoothly
 - Rotating, changing color, size, line width, etc.
- Limited to the shapes the program can handle
- Typically takes less memory and disk space than a bitmap
- Must be converted to a bitmap to display

File Formats

- Once we've chosen which graphics format we're going to use now we have to select which file format
- Each way of storing an image is called a file format
- Each file format converts the image to a corresponding string of bits differently in order to store them on disk or transmit them over the Internet
- It's beyond the scope of this course to discuss how these images are converted
- But, we will discuss the common file formats

File Formats, cont.

- Hopefully, you're familiar with JPEG and GIF file formats (at least in name only)
- You can't just rename "somepicture.gif" to "somepicture.jpg" and expect to get the desired result
 - Can't just rename a .doc file as .ppt and expect a presentation out of it
- Images have to be converted from one file format to another

Common File Formats

Bitmap Formats

- GIF: graphics interchange format
- JPEG: joint photographic experts group
- PNG: portable network graphic
- BMP: Windows bitmap
- TIFF: tagged image file format

Vector Formats

- SVG : scalable vector graphics
- EPS: encapsulated postscript
- CMX: Corel meta exchange
- PICT: Macintosh Picture
- WMF: Windows metafile

How to Pick a File Format?

- Type: does the file format store the type of image you want to use (bitmap or vector)?
- Portability: can other people use images in this format?
- Color Depth: does the format support the number of colors you need?
- Compression: can make the file smaller, but it takes time to compress and decompress a file
- Transparency: do parts of your image need to be transparent?

Color Depth

- Image formats will only allow a certain number of different colors for each pixel
 - Depends on the number of bits assigned to each pixel
- The format stores the level of each of the three values for RGB to specify color
- R,G,and B are referred to as components
 - Ex. "The red component"
- Bit depth describes the number of colors that can be used in the image

Bit Depth

- 24-bit image allows you to specify up to 2²⁴ different colors in your image
 - For each of the RGB values you can specify
 28 different values (256 values)
 - Remember in the color section RGB went from 0-255
 - 28 values for R, for G, and for B gives us 2²⁴ different colors
- The "24" in 24-bit says how many bits it takes to store a single color

Bit Depth cont.

- While most photos look good with 24-bit color, we can have less than that
- 15-bit color can have 2¹⁵ different colors with 2⁵ possible values for each component
- 15-bit color is usually referred to as 16-bit color
 - Use an extra bit for green (we're more sensitive to it)

Formats with Fewer Colors

- Usually images with smaller numbers of colors are paletted or indexed
- Some colors are selected to be in the image's palette
- For each pixel, then you only have to store the number which indicates which palette color you want
 - Instead of specifying its RGB values, specify the number associated with the color
 - Red could have a value of "12"

Palettes

- If you have an 8-bit image, the palette will have 28 (256) colors
 - Each of the 256 colors in the palette come from the possible 2²⁴ different colors in a 24bit image
- A 1-bit image can have 2¹ (2) different colors
 - Usually black and white

Colors vs. Image Size

- It's nice to use as many colors as possible, especially when dealing with photographs
- But, the more colors, the larger the image is to store
 - More information is required for each pixel
- Can work in 24-bit color then save the image with fewer colors for storage or using online

What if your image has more colors than the color depth?

- Usually the graphics program will select colors that closely match those in your image
- If the color is not in the palette, the program can choose a separate, close color, or do dithering
- Dithering is where the program fools your eye by creating a pattern of pixels in two colors which makes you see a color between the two

Dithering

Plain Gray Image

Image which appears this shade gray because of dithering. It actually contains white and gray pixels

Not All Dithering is the Same

- •This shows an example of three different ways to dither the image.
- •Some types of dithering may work better than others depending on the image in question.
- •Some programs allow you to select the type of dithering (Photoshop, e.g.)

Dithering with Color

Color I want to produce

Dithering with all web-safe colors enabled

Dithering with only 2 colors, orange and white

Zoomed View of dithering

Detail from Seurat's La Parade

Seurat's Sunday Afternoon on the Island of La Grande Jatte

Compression

- Compression is used to make files smaller
- Bitmap images, especially, can be quite large if stored without compression
 - Ex. A 640 x 480 pixel image with 24-bit color depth would take:
 - 640 * 480*24 bits = 7372800 bits = 900kB
- Windows bmp format is uncompressed
 - Should NEVER be used online

Lossy vs. Lossless Compression

- There are two main types of compression:
 - Lossy and
 - Lossless
- When an image is compressed and later uncompressed with a lossless algorithm, the image is exactly the same
 - Most common type
 - No information is lost
- Lossy algorithms produce images which may be slightly different before compression and after uncompressing
 - Some information may be lost
 - Can produce sometimes produce much smaller files than a lossless algorithm
 - Can be used when the difference isn't very noticeable
 - Often takes into account human anatomy
 - We can't tell the difference between certain values of color

JPEG

- The JPEG format was designed for photographs at high quality and in full color
- Lossy compression format
- Normally changes can't be seen except at the lowest quality settings
- Bad idea to store simple black and white files as JPEGs
- Good for 8-bit grayscale

GIF and PNG

- GIF uses LZW compression algorithm developed by Unisys
 - It's patented (or was patented)
- PNG was created as an alternative to GIF
 - FREE!!!!
- Both are used for the web frequently because they support transparency
- For this course, you should try and use PNG instead of GIF
 - Considered better algorithm
 - No patent issues

Transparency

- Allows part of the image to be transparent
 - The background will show through
- Often used with graphics on web pages
 - The image is still a rectangle
 - Parts of the background show through so it doesn't look like a rectangle
- Not all image formats support transparency

Simple Transparency

- GIF supports simple transparency
- Some pixels are marked as transparent
 - The background will show through
- Images can appear any shape
- It's "all or nothing" transparency
 - Either the pixel is completely transparent or its not

Example of GIF Transparency

- •GIF with a white background.
- Unsightly for web pages

- •GIF with a transparent background.
- •Image is the same size as image on left
- •But, background shows through

Alpha Channel

- Alpha channel is a more general method of transparency
- Images now have two parts:
 - The image
 - A mask, called the alpha channel
- The alpha channel indicates how transparent each pixel is
- If supported by the program and format, you can specify partial transparency of images
- GIMP and Photoshop support full transparency
- So does the PNG format
- If it's not supported, the advanced transparency information is ignored

Why Use Transparency?

- You could simply color the background of your image to the same color as the background of your webpage
- What happens, though, if you decide to change the background color on your site?
 - Have to change every single image!
- Better to use transparency for images with shapes (like the snail)
 - Not necessary for square images like a photograph

Common File Formats for the Web

- The three most common file formats on the web are:
 - JPEG (.jpg)
 - GIF (.gif)
 - PNG (.png)
- Most programs have their own file format called a native format
 - These formats are unique to the program
 - Good because you can save without losing any information
 - They use no compression or lossless compression
 - Can't use these online because browsers can't display them and people can't necessarily open them

JPEG

- JPEG: Joint Photographic Experts Group
- .jpg is the file extension (normally)
- Bitmap format
- Lossless compression
- 24-bit color or 8-bit gray-scale
 - Like you'd get from a digital camera or scanner

GIF

- GIF: Graphics Interchange Format
- .gif file extension
- Bitmap format
- Lossless compression
- Used a lot on the web
- Good for simple animations and simple transparency
- Limited to 8-bit color (256 colors)
- Compression algorithm is patented

PNG

- PNG: Portable Network Graphic
- Bitmap format
- Lossless compression
- Replacement for GIF (no patent!)
- Better compression algorithm than GIF
- Supports 24-bit color and full transparency

Other Common File Formats

- You can read about the other common file formats in section 3.6 of your course pack
- The ones listed are: BMP, TIFF, EPS, and SVG
- BMP and TIFF are bitmapped graphics
- EPS and SVG are vector graphics

Be Sure to Know

- The differences between vector and bitmapped graphics
 - Their properties
 - How they work (shapes vs. pixels)
- You should be very familiar with the information about JPEG, GIF, and PNG.
- Also know BMP, and at least one vector graphics file format

Questions?

Seurat's Grey weather, Grande Jatte