Structures

Structures

Complex data types

Structures

Defined types

Structures and functions
Structures and pointers

(Very) brief introduction to the STL

Representing Complex Data

Representing Data

Many programs require complex data to be
represented

That cannot easily be represented using base type
variables and arrays
Base types are the defined C++ types like int, char, float, etc.

C++ allows structures to be defined and used in a
program

A structure is a complex type that collects a number
of variables, arrays or even other structures

Representing Students

Let's assume that we want to represent
student data for a small university
For each student we want to maintain
First name —a string
Last name —a string
Student number —an integer
GPA —a float

this is a simplified version of what would
be necessary, some of the complicating
issues will be discussed later

Students without Structures

If we wanted to maintain a list of a hundred
students we could use four separate arrays
One for each of the four attributes
First name, last name, student number, GPA
Referred to as parallel arrays
Whenever we want to retrieve student data
we would use the same index in all arrays

Parallel Arrays

index 0 1 2 33 97 98 99
id | 9101 | 7234 15678 4864 1789 | 2457 | 4444
index 0 1 2 33 97 98 99
first | Bob | Kate | Sue Dave Joe Ella | Anna
index 0 1 2 33 97 98 99
last | Wing | Smith | Abel Dodd Ng | Moss | Frenc
index 0 1 2 33 97 98 99
gpa @ 3.00 @ 3.50 | 2.75 3.75 2.25 | 4.00 | 3.50

Represents the student Dave Dodd

Parallel Array Drawbacks

Maintaining parallel arrays can be fiddly
We must make consistent changes to all arrays

If we delete an element from one, elements at the same
index must be deleted from the others

If we sort one array then all the other arrays must be sorted in
the same way

Passing student data to functions is tedious
A function to print student data needs four parameters
Or we can use structures

Or classes

Sort Error in a Parallel Array

Parallel arrays with sample data — assume we want to sort by ID

index

id

index

first

index

last

index

gpa

(o)

9101

Bob

Wing

3.00

1

7234

Kate

Smith

3-50

2

5678

Sue

Abel

2.75

3
4475

Alan

Flim

2.00

4 5
4864 | 3459
4 5
Dave | Joy
4 5
Dodd @ Shae
4 5
3-75 | 3:50

6 7 8
1789 | 2457 | 4444
6 7 8
Joe Ella | Anna
6 7 8
Ng | Moss | Frenc
6 7 8
2.2 | 4.00 | 3.50

Sort Error in a Parallel Array

Sort ID array = The data is now corrupt — students no longer have the right IDs

index 0 1 2 3 4 5 6 7 8

id | 1789 | 2457 | 3459 | 4444 | 4475 | 4864 | 5678 | 7234 | 9101

index 0 1 2 3 4 5 6 7 8

first | Bob | Kate | Sue | Alan | Dave | Joy Joe Ella | Anna

index 0 1 2 3 4 5 6 7 8
last | Wing | Smith | Abel | Flim H Dodd Shae | Ng | Moss | Frenc

index 0 1 2 3 4 5 6 7 8

gpa | 3.00 | 3.50 @ 2.75 | 2.00 | 3.75 | 3.50 @ 2.25 | 4.00 | 3.50

Structures

Structure Declarations

A structure declaration defines a complex

type
structure name
keyword struct Student
{

int id;
student string first;
member string last;
variables float gpa;

¥ ending;

Defining a Structure Variable

A structure declaration describes what data
types are associated with a struct
It does not allocate space for any variables

It is like a blueprint for a type
Space is allocated when a variable is declared

Student stil;

Instructs the compiler to reserve space for an int, two
strings and a float

These four components of stz are allocated memory on the
stack in sequence

What Goes Where

It is common for struct definitions to appear
outside any function — including main
So that they are available anywhere in the file

If a struct is defined inside a function it is only
available in that function

Variables of a struct type are declared
wherever they are needed

Just like any other variable

Initializing a Structure

A structure can be initialized in much the
same way as an array

Using a comma separated list of values enclosed
in curly brackets

Student stl = { 123, "bob", "bobson", 2.5 };

Accessing Structure Members

Variables of a structure have to be accessed
individually using the member operator (.)

To access a structure variable use the structure
name and the variable name separated by a dot

s1.id = 12345;
They can then be used like any variable of the
same type

And can be accessed, assigned new values, passed to
functions and so on

Enter Student Data

We will look at an example that enters and
prints student data

The student structure is declared
A student variable is defined

The user is requested to enter values for the
structure attributes

The student data is printed

Student Data — Declarations

declares the student structure

#include "<iostream>"
#include "<string>"
using namespace std;

// Student structure
struct Student

{
int id;
str}ng first; the student structure
string last; ‘
float gpa;
¥

// Forward Declarations
void printStudent(Student st);

Student Data — main

int main()

{

Student s1; the one and only student
cout << "Enter ID: ";

cin >> sl1.id;

cout << "Enter first name: ";
cin >> sl.first;

cout << "Enter last name: "; use dot notation to access student
cin >> sl.last; attributes (member variables)
cout << "Enter GPA: ";

cin >> sl.gpa;

cout << endl;

printStudent(sl); call the print function
return 0; |

Student Data - Print Function

and finally the print function definition

' ’ te: d by val
void printStudent(Student st) ROLEGRASSEC A AlLE

{
cout << st.id;
cout << " " << st.first << " " << st.last;
cout << " GPA: " << st.gpa;

}

Enter first name: GClark
Enter last name: Kent

12345 Clark Kent GPA = 4.33

Structures and Functions

Structures can be used as function
parameters and arguments

In the same way as any other variable
Parameter passing is pass by value

Structure variables are not pointers
Unlike array variables

When a structure is passed to a function the
parameter is a copy of the original

Even if the original structure contained arrays!

Arrays of Structures

It is possible to create arrays of structures

They are declared like any other kind of array
e.g. Student class[100];
Individual elements are also accessed like any

other array
struct attributes are accessed with dot notation

Let's say we want to find the first name of the
student with index 15

class[15].first notclass.first[1s]...

Assigning Structures

Unlike arrays, one structure can be assigned to
another structure of the same type

Again, even if the structure contains an array
A note on memory allocation

A structure might include an array in dynamic memory
It's array variable is really a pointer to that array

Pointer size is constant, even though the size of arrays in two
different structures might vary

Two structures that contain different sized arrays are still
the same size in bytes

More Complex Types

Let's make the example more complex
It isn’t realistic to just record GPA

GPA is calculated from the grades that a student
receives for courses

We will create a simple course structure
Department (like CMPT)

Number (like 130)
Grade (A, B, C, D and F)

Course and Student Structure

Here is the course structure And the revised student structure
// Course structure struct Student
struct Course {
{ int id;
string department; string first;
int number; string last;
char grade; Course* grades;
}s int coursesTaken;

int maxCourses

it is perfectly OK to nest structures

an array of courses!
and to make arrays of structures

struct Methods

There is an issue with the Student structure

What happens with the array of courses when we
create a new Student?

The array has not yet been created by calling new
So the array variable should be set to NULL or nullptr

It is possible to define methods for C++
structures

Functions that belong to the structure
We will write a constructor for Student

Course and Student Structure

struct Student The revised student structure
(|

int id;

string first;

string last;

Course* grades;

int coursesTaken;

int maxCourses;
This is the definition of the

Student() { constructor for a Student — it sets
id = o; the initial values of the attributes
first = last = "";
grades = NULL; Note that there is no return type

coursesTaken = 0;
maxCourses = 0;

}s

Constructors

A constructor is a special kind of function

That is used to initialize the member variables of a
struct or a class

It is called automatically whenever a new Student
variable is created

Student s1;
Setting the array to NULL allows us to write a

function to insert values into a student
To recognize that the array has not been created
And create the array using new

The Student struct still has some issues

We need two variables to deal with the array size
maxCourses records the actual size of the array

Which could be increased if necessary

coursesTaken records the number of courses that the student has
actually taken

We would need to write an insertion function to
ensure that these values are set correctly
And that the array is created

Using a vector instead of an array would simplify some of
these issues

