


 Complex data types
 Structures
 Defined types
 Structures and functions
 Structures and pointers
 (Very) brief introduction to the STL





 Many programs require complex data to be 
represented

▪ That cannot easily be represented using base type 
variables and arrays

▪ Base types are the defined C++ types like int, char, float, etc.

 C++ allows structures to be defined and used in a 
program

▪ A structure is a complex type that collects a number 
of variables, arrays or even other structures



 Let’s assume that we want to represent 
student data for a small university

 For each student we want to maintain

▪ First name – a string

▪ Last name – a string

▪ Student number – an integer

▪ GPA – a float

this is a simplified version of what would
be necessary, some of the complicating
issues will be discussed later



 If we wanted to maintain a list of a hundred 
students we could use four separate arrays

▪ One for each of the four attributes

▪ First name, last name, student number, GPA

▪ Referred to as parallel arrays

 Whenever we want to retrieve student data 
we would use the same index in all arrays



index 0 1 2 ... 33 ... 97 98 99

id 9101 7234 5678 4864 1789 2457 4444

index 0 1 2 ... 33 ... 97 98 99

first Bob Kate Sue Dave Joe Ella Anna

index 0 1 2 ... 33 ... 97 98 99

last Wing Smith Abel Dodd Ng Moss Frenc

index 0 1 2 ... 33 ... 97 98 99

gpa 3.00 3.50 2.75 3.75 2.25 4.00 3.50

Represents the student Dave Dodd



 Maintaining parallel arrays can be fiddly

▪ We must make consistent changes to all arrays

▪ If we delete an element from one, elements at the same 
index must be deleted from the others

▪ If we sort one array then all the other arrays must be sorted in 
the same way

▪ Passing student data to functions is tedious

▪ A function to print student data needs four parameters

 Or we can use structures

▪ Or classes



index 0 1 2 3 4 5 6 7 8

id 9101 7234 5678 4475 4864 3459 1789 2457 4444

index 0 1 2 3 4 5 6 7 8

first Bob Kate Sue Alan Dave Joy Joe Ella Anna

index 0 1 2 3 4 5 6 7 8

last Wing Smith Abel Flim Dodd Shae Ng Moss Frenc

index 0 1 2 3 4 5 6 7 8

gpa 3.00 3.50 2.75 2.00 3.75 3.50 2.25 4.00 3.50

Parallel arrays with sample data – assume we want to sort by ID



index 0 1 2 3 4 5 6 7 8

id 9101 7234 5678 4475 4864 3459 1789 2457 4444

index 0 1 2 3 4 5 6 7 8

id 1789 2457 3459 4444 4475 4864 5678 7234 9101

index 0 1 2 3 4 5 6 7 8

first Bob Kate Sue Alan Dave Joy Joe Ella Anna

index 0 1 2 3 4 5 6 7 8

last Wing Smith Abel Flim Dodd Shae Ng Moss Frenc

index 0 1 2 3 4 5 6 7 8

gpa 3.00 3.50 2.75 2.00 3.75 3.50 2.25 4.00 3.50

Sort ID array The data is now corrupt – students no longer have the right IDs





 A structure declaration defines a complex 
type

struct Student
{

int id;
string first;
string last;
float gpa;

};

keyword
structure name

student 
member 
variables

ending ;



 A structure declaration describes what data 
types are associated with a struct

▪ It does not allocate space for any variables

▪ It is like a blueprint for a type

 Space is allocated when a variable is declared

▪ Student st1;

▪ Instructs the compiler to reserve space for an int, two 
strings and a float

▪ These four components of st1 are allocated memory on the 
stack in sequence



 It is common for struct definitions to appear 
outside any function – including main

▪ So that they are available anywhere in the file

▪ If a struct is defined inside a function it is only 
available in that function

 Variables of a struct type are declared 
wherever they are needed

▪ Just like any other variable



 A structure can be initialized in much the 
same way as an array

▪ Using a comma separated list of values enclosed 
in curly brackets

Student st1 = { 123, "bob", "bobson", 2.5 };



 Variables of a structure have to be accessed 
individually using the member operator (.)

▪ To access a structure variable use the structure 
name and the variable name separated by a dot

▪ s1.id = 12345;

▪ They can then be used like any variable of the 
same type

▪ And can be accessed, assigned new values, passed to 
functions and so on



 We will look at an example that enters and 
prints student data

▪ The student structure is declared

▪ A student variable is defined

▪ The user is requested to enter values for the 
structure attributes

▪ The student data is printed



#include "<iostream>"
#include "<string>"
using namespace std;

// Student structure
struct Student
{

int id;
string first;
string last;
float gpa;

};

// Forward Declarations
void printStudent(Student st);

the student structure

declares the student structure



int main()
{

Student s1;
cout << "Enter ID: ";
cin >> s1.id;
cout << "Enter first name: ";
cin >> s1.first;
cout << "Enter last name: ";
cin >> s1.last;
cout << "Enter GPA: ";
cin >> s1.gpa;
cout << endl;

printStudent(s1);
return 0;

}

the one and only student

use dot notation to access student 
attributes (member variables)

call the print function



void printStudent(Student st)
{

cout << st.id;
cout << " " << st.first << " " << st.last;
cout << " GPA: " << st.gpa;

}

note: passed by value

and finally the print function definition



 Structures can be used as function 
parameters and arguments

▪ In the same way as any other variable

▪ Parameter passing is pass by value

▪ Structure variables are not pointers

▪ Unlike array variables

 When a structure is passed to a function the 
parameter is a copy of the original

▪ Even if the original structure contained arrays!



 It is possible to create arrays of structures

▪ They are declared like any other kind of array

▪ e.g. Student class[100];

 Individual elements are also accessed like any 
other array

▪ struct attributes are accessed with dot notation

▪ Let's say we want to find the first name of the 
student with index 15

▪ class[15].first not class.first[15] ... 



 Unlike arrays, one structure can be assigned to 

another structure of the same type

▪ Again, even if the structure contains an array

 A note on memory allocation

▪ A structure might include an array in dynamic memory

▪ It's array variable is really a pointer to that array

▪ Pointer size is constant, even though the size of arrays in two 

different structures might vary

▪ Two structures that contain different sized arrays are still 

the same size in bytes



 Let’s make the example more complex

▪ It isn’t realistic to just record GPA

▪ GPA is calculated from the grades that a student 
receives for courses

 We will create a simple course structure

▪ Department (like CMPT)

▪ Number (like 130)

▪ Grade (A, B, C, D and F)



// Course structure
struct Course 
{

string department;
int number;
char grade;

};

Here is the course structure

struct Student
{

int id;
string first;
string last;
Course* grades;
int coursesTaken;
int maxCourses

} ;

an array of courses!
it is perfectly OK to nest structures
and to make arrays of structures

And the revised student structure



 There is an issue with the Student structure

▪ What happens with the array of courses when we 
create a new Student?

▪ The array has not yet been created by calling new

▪ So the array variable should be set to NULL or nullptr

 It is possible to define methods for C++ 
structures

▪ Functions that belong to the structure

▪ We will write a constructor for Student



struct Student
{

int id;
string first;
string last;
Course* grades;
int coursesTaken;
int maxCourses;

Student() {
id = 0;
first = last = "";
grades = NULL;
coursesTaken = 0;
maxCourses = 0;

}
};

The revised student structure

This is the definition of the
constructor for a Student – it sets
the initial values of the attributes

Note that there is no return type



 A constructor is a special kind of function

▪ That is used to initialize the member variables of a 
struct or a class

▪ It is called automatically whenever a new Student 
variable is created

▪ Student s1;

 Setting the array to NULL allows us to write a 
function to insert values into a student

▪ To recognize that the array has not been created

▪ And create the array using new



 The Student struct still has some issues

▪ We need two variables to deal with the array size
▪ maxCourses records the actual size of the array

▪ Which could be increased if necessary

▪ coursesTaken records the number of courses that the student has 
actually taken

 We would need to write an insertion function to 
ensure that these values are set correctly

▪ And that the array is created

▪ Using a vector instead of an array would simplify some of 
these issues


