A Brief Introduction

Recursion

Introduction

Many algorithms require that processes are
repeated

lterating through the elements of an array
Computing statistics
Printing

Sorting
Programming constructs for repetition
while
do ... while
for

Repetition with Functions

In addition to loops there is another way to
repeat a process

That uses function calling instead of loops
Consider the factorial example

The factorial of 5 equals 5 *4!
Let s state this more generally

The factorial of x equals x * (x - 1)! where x > 1
And the factorial of 1 =1

Yet Another Factorial Function

Let's write a function to compute factorials
using the ideas presented previously

Forallx>1, x'=x*(x-1)land1!=1

// PRE: x must be a +ve integer
// Function that returns the factorial of x
long long factorial(int x){

if(x == 1)
{ return 1: does this work?
telse{

return x * factorial(x-1);

}

Testing Factorial

void recursionTest()

{

int x 10;
cout << X <<

<< factorial(x);

<
C:\Windows\system32\cmd.exe l = | = '_EE-J

10! = 3628800

A

-

4 1} »

incidentally, in case you were wondering why my
factorial functions all returned long longs, here is 20!

BEX C\Windows\system32\omd exe

ESEEREC)

20! 2432902008176640000

2147483647

INT_MAX

Recursion

Recursive Functions

The factorial function is a recursive function
Because it calls itself

// PRE: x must be a +ve integer
// Function that returns the factorial of x
long long factorial(int x){

if(x == 1) base case
return 1;
telse{

return x * factorial(x-1);

}

recursive case

Recursive Functions

The factorial function is recursive
A recursive function calls itself

Each call to a recursive function results in a separate call to
the function, with its own input

Recursive functions are just like other functions
The invocation is pushed onto the call stack

And removed from the call stack when the end of the
function or a return statement is reached

Execution returns to the previous function call

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result; ; slightly different version to

} show what is going on in memory
fact(4)
address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result;

fact(4) | fact(3)

address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result;

fact(4) | fact(z) @ fact(2)

X result

address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result;

fact(4) @ fact(z) | fact(2) @ fact(z)

X result X result

address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result;

fact(4) @ fact(z) | fact(2) @ fact(z)

X result X result

address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result;

fact(4) | fact(z) @ fact(2)

X result

address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result;

fact(4) | fact(3)

address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result;

fact(4)

address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursion and Memory

int fact(int x){

int result = 0; int test = 4;

if(x == 1) cout << x << "l =" << fact(test);
result = 1; |

else

result = x * fact(x-1);
return result;
) BN C:\Windows\s.. o e S

address 2056 2060 2064 2068 2072 2076 2080 2084 2088

call stack — shown as 4 byte cells (since we only allocate
space for ints)

Recursive Function Anatomy

Recursive functions do not use loops to
repeat instructions

But use recursive calls, in if statements
Recursive functions consist of two or more
cases, there must be at least one

Base case, and one

Recursive case

Base Case

The base case is a smaller problem with a
simpler solution

This problem’s solution must not be recursive
Otherwise the function may never terminate
There can be more than one base case

And base cases may be implicit

Recursive Case

The recursive case is the same problem with
smaller input

The recursive case must include a recursive
function call

There can be more than one recursive case

Finding Recursive Solutions

Define the problem in terms of a smaller
problem of the same type

The recursive part

e.g. return x * factorial(x-1);
And the base case where the solution can be
easily calculated

This solution should not be recursive

e.g.if (x == 1) return 1;

Designing Recursive Solutions

How can the problem be defined in terms of
smaller problems of the same type?

By how much does each recursive call reduce the
problem size?

By 1, by half, ...?
What is the base case that can be solved
without recursion?

Will the base case be reached as the problem size
is reduced?

Warning — Stack Overflow

Here is a recursive sum function (very similar to factorial)

int sum(int x){
if(x == 1)

{
return 1;
telse{
return x + sum(x-1);

} Microsoft Visual Studio
I Unhandled exception at (:011EB299 in cmptl30samples.exe: 0xCO0000FD: Stack
. overflow (parameters: 0:00000001, 0:00132FEE).

And here is what happens
when you call sum(5000)

Break when this exception type is thrown
Break and open Exception Settings

Break | | Continue

Stack Overflow

Recursive algorithms have more overhead
than similar iterative algorithms
Because of the repeated function calls

This may cause a stack overflow
The area of memory allocated to the call stack is used up
Some algorithms can still be implemented

recursively in a safe way
Will the recursive factorial cause a stack overflow?

Why Use Recursion?

Some algorithms are naturally recursive

So writing a recursive solution is much easier than
writing an iterative one

e.g. Quicksort
Recursion is a great problem solving tool

It is another way to reason about solutions

Even if we implement the solution using iteration

