

 Arrays

▪ Returning arrays

▪ Pointers

▪ Dynamic arrays

 Smart pointers
 Vectors

 To declare an array specify the type, its name,
and its size in []s

▪ int arr1[10]; //or

▪ int arr2[] = {1,2,3,4,5,6,7,8};

▪ arr2 has 8 elements

 The size must be a literal or a constant

▪ int arr3[ARR_SIZE];

 The size cannot be a variable

assuming ARR_SIZE is a constant

const int ARR_SIZE = 10;

 To access an element of an array use the array
name and an index

int arr[ARR_SIZE];

arr[0] = 1;

 To iterate through an array use a loop

for(int i = 0; i < ARR_SIZE; ++i)

{

cout << "arr[i] = " << arr[i] << endl;

}

assuming ARR_SIZE is a constant and

arr has been declared and initialized

 If an array is not initialized it will contain
garbage values

▪ The bit pattern that happens to be stored in the
array elements' memory locations

int arr[10];

for(int i = 0; i < 10; ++i){
cout << "arr[" << i << "] = " << arr[i] << endl;

}

 Be careful not to access an array using an
index that is out of bounds

▪ Less than zero or greater than array size - 1

 The sizeof function can be used to find the
length of an array

▪ But only for static arrays

for(int i = 0; i < sizeof(arr) / sizeof(int); ++i){
cout << "arr[" << i << "] = " << arr[i] << endl;

}

void arrayBoundsTest()
{

int x;
char str[20];
int arr[10];
double dbl;

strcpy(str, "Hi, my name is Bob");
arr[12] = 1148153709;

cout << "address of x = " << &x << endl;
cout << "address of str = " << (void*) str << endl;
cout << "address of arr[0] = " << arr << endl;
cout << "address of arr[12] = " << &arr[12] << endl;
cout << "arr[12] = " << arr[12] << endl;
cout << "address of str[8] = " << (void*) &str[8] << endl;
cout << "address of dbl = " << &dbl << endl << endl;
cout << "str = " << str << endl;

}

 Arrays can be passed to functions

▪ The parameter specifies an array

▪ int sumArray(int arr[], int size) { … }

▪ It is common to pass the size of the array

▪ Array arguments are passed as normal

▪ int sum = sumArray(arr, ARR_SIZE);

 Arrays can also be returned from functions

▪ But not like this:

▪ int arr[] foo() { … }

 If an array is passed to a function, changes
made to it within the function will persist

▪ Because an array variable contains the address of
the first element of the array

▪ Called a pointer

▪ A static array variable is a constant pointer to the
first element of the array

▪ Array parameters give the address of the array

 Let’s assume that we would like to write a
function that returns an integer sequence

▪ Like {1,2,3,4,5} or {11,12,13}

▪ The return type would seem to be int[]

 But this implies that the function is returning
a constant (array) pointer

▪ Which presumably would be assigned to another
constant pointer

▪ Which is illegal – why?

 There is one big issue with stack memory

▪ Because memory is allocated in sequence it is not
possible to change the size in bytes of a variable

 This isn’t a problem that applies to single
base typed variables (int, double etc.)

▪ There is no need to change the number of bytes
required for single variables

 But we might want to change an array's size

▪ To store more things in it

int main(){
int arr[3];
arr [0] = 1;
arr [1] = 2;
arr [2] = 3;
double vid = 2.397;
arr = sequence(5, 8);

int[] sequence(int start, int end){
int arr[end – start + 1];
int i;
for(i=0; i <= end - start; i++){

arr[i] = start + i;
}
return arr;

}

stack memory

arr vid*

1 2 3 2.397

*very important
double ☺

statements in red are illegal*

* the second line, a variable length array,
may be legal using some compilers

stack memory

arr vid

2 3 2.397 5

start

8

end

81
This is a problem, we've just
corrupted the first 4 bytes of vid

5 6 7

… which is why you can’t do this …

int main(){
int arr[3];
arr [0] = 1;
arr [1] = 2;
arr [2] = 3;
double vid = 2.397;
arr = sequence(5, 8);

int[] sequence(int start, int end){
int arr[end – start + 1];
int i;
for(i=0; i <= end - start; i++){

arr[i] = start + i;
}
return arr;

}

statements in red are illegal

 To return an array you return a non-constant
pointer of the appropriate type

▪ e.g. int* sequence(int start, int end)

 The new array should be assigned space in
dynamic memory in the function

▪ Dynamic memory is a section of main memory
that is separate from stack memory

▪ We use pointers to access this area of main
memory

 A pointer is a special type of variable

▪ That stores an address rather than a value

▪ They are called pointers as they can be considered
to point to a variable

 It is necessary to record the type of data that
a pointer variable points to

▪ So that the appropriate operations can be
performed on the value it points to

 The solution to returning an array is to return
a pointer to an array in dynamic memory

 What exactly is a pointer?

▪ And how do they operate?

 What is dynamic memory?

▪ How is it used?

▪ How does it compare to automatic memory

▪ How is it allocated space?

▪ When is that space released?

 A pointer is a special type of variable

▪ That stores an address rather than a value

▪ They are called pointers as they can be considered
to point to a variable

 It is necessary to record the type of data that
a pointer variable points to

▪ So that the appropriate operations can be
performed on the value it points to

 Pointers store addresses

▪ Addresses are always the same size on the same
system

 So why do we have to say what type of data is
going to be pointed to?

▪ To reserve enough space for the data and

▪ To ensure that the appropriate operations are
used with the data

 Pointer variable are identified by an * that
follows the type in the declaration

▪ int * p;

 This declares a variable called p that will point
to (or refer to) an integer

 Note that the type of a pointer is not the
same as the type it points to

▪ p is a pointer to an int, and not an int

 Previously I declared a pointer like this

▪ int * p;

▪ The spaces are not necessary

 You can do this

▪ int *p;

 Or this

▪ int* p;

 Or even this

▪ int*p; But this is kind of ugly!

What does this declare? int *p, x;

 The operation shown below is unsafe

▪ int x = 12;

▪ int *p = x;

 Remember that the type of p is an address of
an int, and not an int

▪ Addresses are actually whole numbers but
assigning arbitrary numbers to them is a bad idea

▪ Since a programmer is unlikely to know what is
stored at a particular memory address

This is not a good thing to do and will result in a
compiler warning or error

 Pointers can be assigned the address of an
existing variable

▪ Using the address operator, &

▪ In this way it is possible to make a pointer refer to
a variable

 In practice this is not something that happens
often

▪ But it is useful to illustrate pointer behaviour

0 212 220-1

23

0 212 220-1

212 23

0 212 220-10 212 220-1

23

int x = 23; //located at byte 212

int* p = &x; //stores the address of x - byte 212

p stores the address of x

& is the address of operator

-- byte addresses --

 Pointers can be used to access variables

▪ But only after they have been assigned the
address of a variable

 To change the value of a variable a pointer
points to the pointer has to be dereferenced

▪ Using the * operator which can be thought of
meaning the variable pointed to

int x = 105;
int *p = &x; //assign p the address of x
*p = 9; //dereferences p, assigns 9 to x

cout << "x = " << x << endl;
cout << "&x = " << &x << endl;
cout << "p = " << p << endl;
cout << "&p = " << &p << endl;
cout << "*p = " << *p << endl;

int x = 12;
int y = 77;
int *p1 = &x; //assign p1 the address of x
int *p2 = &y; //assign p2 the address of y

p1

p2

12

77

x

y

int x = 12;
int y = 77;
int *p1 = &x; //assign p1 the address of x
int *p2 = &y; //assign p2 the address of y
p1 = p2; //assigns the address in p2 to p1

p1

p2

12

77

x

y

1277

int x = 12;
int y = 77;
int *p1 = &x; //assign p1 the address of x
int *p2 = &y; //assign p2 the address of y
*p1 = *p2;

p1

p2 77

x

y

 In practice we don't often use pointers like
the preceding examples

 Pointers can be used to allow functions to
change the value of their arguments

 They are also key to managing memory for
objects that change size during run-time

▪ Such objects are allocated space in another area
of main memory – in dynamic memory

 Many functions return data

▪ This data is typically returned by value

▪ Consider int x = foo();

▪ foo presumably returns some integer value

▪ Which is assigned to the memory space of variable x

 Array variables are pointers to arrays

▪ Returning an array therefore entails returning an
address

▪ Which cannot be assigned to a constant pointer

 Consider a function that declares an array on
the stack and returns its address

▪ Recall that stack memory for a function is
released once the function terminates

▪ That is, it becomes available for re-use

▪ Therefore the contents of such an array may be
over-written with other data

▪ As part of the normal processing of stack memory

 See class example …

 The lifetime of variables allocated in automatic
(stack) memory is fixed
▪ To the duration of the variables function call

▪ The size of such variables is dependent on type and is
also fixed

 It is possible to fix the space and lifetime of a
variable at run-time
▪ Allowing the variable to exist for as long as it is

needed and

▪ To avoid wasting space where the space required for
the variable may vary

 Dynamic memory is allocated from a
different area of memory than the stack
▪ This area of memory is referred to as the free store

or the heap

▪ Like stack memory the size is fixed, and is, of
course, finite

 Dynamic memory can be allocated and de-

allocated explicitly

▪ Using new and delete

 Dynamic memory can be allocated at runtime

▪ Using new to request memory

▪ new determines the number of bytes to be allocated by
reference to the type of data being created

 Memory allocated with new remains
allocated until it is released

▪ It is not limited to the lifetime of the block in
which it is allocated

▪ Memory is released by calling delete

int main()
{

int* p = nullptr;
int n = 3;
p = foo(n);

bar(p);

return 0;

}

void bar(int* arr)
{

int bar1, bar2;
// …
delete[] arr;
// …

}

int* foo(int x)
{

int foo1, foo2;
// …
int* arr = new int[x];
// …
return arr;

}

duration
of main

variables
p, n

duration
of foo
variables
foo1, foo2

duration
of bar
variables
bar1, bar2

time

duration
of arr
assigned
to p

 new allocates dynamic memory and returns
the address of its first byte

▪ Which should be assigned to a pointer variable

 Dynamic memory is often used to create
arrays whose size is only known at run time

▪ For example create an array of ten integers

▪ int* arr = new int[10];

▪ The address returned by new is assigned to arr

 Step 1 – declare a pointer of the desired type

▪ int* if we are going to store integers

▪ float* if we are going to store floats

▪ string* if we are going to store strings

 Step 2 – assign the pointer the address of the
desired amount of space using new

▪ int* arr = new int[100];

▪ An instruction to make space for 100 integers in
dynamic memory and store the address in arr

 The keyword new assigns space in dynamic
memory

 We can assign new arrays to existing pointer
variables

▪ int* arr = new int[1000];

▪ arr = new int[100000];

▪ This second line causes a problem since we have
not de-allocated the originally assigned memory

▪ The space should be de-allocated using delete

 Arrays assigned to pointers may be used just
like regular (static) arrays

▪ The elements can be accessed using an index

▪ Without dereferencing the pointer

▪ Recall that static array variables are also pointers

▪ That are constant

 Unlike static arrays, dynamic arrays space
must be explicitly de-allocated

▪ Using delete

int* sequence(int start, int end)
{

int size = end – start + 1;
int* arr = new int[size];
for(int i = 0; i < size; ++i){

arr[i] = start + i;
}
return arr;

}

the function would be called like this

int* p;
int size = 11;
p = sequence(10, 20);
cout << p[3] << endl;
// prints 13

Here is a function that correctly returns
a sequence of values to a pointer

returns a pointer to an array

The elements of the array that p
points to are indexed just like a
regular array

allocates space in dynamic
memory for the array

int* arr = new int[10];
// ... do stuff with arr
// ... and make a new, larger array
arr = new int[1000];

allocates 40 bytes
in the heap

allocates another 4000 bytes in the heap, it does not
re-use the 40 bytes that were previously allocated

the original 40 bytes cannot be accessed, since the
program no longer records the address

however, they are also unavailable for reuse, thereby
causing a memory leak

 A memory leak occurs when dynamic
memory is allocated but is not de-allocated

▪ When it is no longer required

 Dynamic memory that is not de-allocated is
unavailable until the program terminates

▪ Or even longer in some older operating systems

 Large memory leaks may affect the
performance of applications

 Any dynamic memory that is allocated by a
program should be de-allocated

▪ By calling delete

▪ delete takes a single argument, a pointer to the memory that
is to be de-allocated

▪ If the pointer refers to an array use delete[]

 Every use of new should be matched by a call to
delete

▪ When the allocated dynamic memory is no longer
required

 Other languages simplify the use of automatic and
dynamic memory

▪ So that programmers are not responsible for deleting unneeded
dynamic memory

▪ Known as automated garbage collection

▪ Often achieved by removing the choice of where to store data

 While memory allocation in C++ is more complex it allows
for greater flexibility

▪ Which is useful for low level programming

 Modern C++ provides smart pointer syntax that removes
the need to use new and delete

 A dynamic array is an array that increases size
as necessary

▪ Usually by doubling the number the size of the
array when it is full

▪ The underlying array is stored in dynamic memory

 Dynamic arrays would normally be created as
a class in C++

▪ We do not cover classes in CMPT 130

 The process for inserting values into a
dynamic array is like this

▪ If the array is full:

▪ Assign the address of the array to a temporary pointer

▪ Assign a new array of twice the size to the array pointer

▪ Copy the contents of the original array to the new array

▪ Delete the original array

▪ Insert the new value into the next free element

▪ And increment the count of the values

 Arrays are somewhat fiddly to use

▪ We have to distinguish between arrays on the stack and arrays
in dynamic memory

▪ Static arrays can’t change size

▪ We have to be responsible for the allocating and de-allocating memory
to arrays in dynamic memory

▪ We need to record their size separately

▪ And pass this value to any functions that process the array

 These issues do not exist because arrays are somehow bad

▪ It is because they are very low level structures

▪ That are used to create more sophisticated containers

 C++ has a set of classes and functions that
implement common algorithms and containers

▪ Called the Standard Template Library

▪ Or STL for short

 These algorithms and classes are templates that
can be used with data of different types

▪ Templates are beyond the scope of CMPT 130

▪ But are covered in CMPT 135

▪ We will look at one function and one container from
the STL

 The C++ Standard Template Library (STL)
provides a number of container template classes

▪ A container class is used to store data

▪ Different containers organize data in different ways

▪ To optimize certain operations

 The vector class implements a dynamic array

▪ The underlying array increases size as required

▪ A programmer using a vector is not responsible for dealing
with the allocation and deallocation of dynamic memory

 #include the <vector> library to use vectors

 Vectors are used in a very similar way to

arrays

▪ Elements can be accessed using indexes

 In addition to being used like arrays, vectors

have some useful methods

▪ The size() method records the size of the vector

▪ There are a variety of methods for insertion and

removal of values

 Vectors are implemented in the vector library

▪ #include <vector>

 Vectors can contain data of any type

▪ The type must be given in <>s when the vector is
declared

▪ vector <string> name;

▪ vector <int> scores;

▪ vector <Student> class;

 The <>s contain template arguments

▪ In this case, the name of the type to be stored

 Vectors may be given a size when declared
 The vector elements are given default values

▪ 0 for numbers

▪ "" for strings (the empty string)

 You can provide your own default value

▪ vector <double> v(10000, 2.1);

 You cannot refer to nonexistent elements

▪ v[12001] = 23.67;

size
value

error because there is no such element

Is v[10000] = 23.67; an error? Yes!

 Vectors can contain data of any type

▪ The type must be given in <>s when the vector is
declared

vector <string> name(3);

name[0] = "Bob";

name[1] = "Susan";

name[2] = "Kelly";

 The <>s contain template arguments

▪ In this case, the name of a type

// Create an empty vector of doubles
vector <double> v;
// Insert some values
v.push_back(1.2);
v.push_back(3.7);
v.push_back(7.4);
// check how big the vector is
cout << "v's size is " << v.size();
// print the contents of the vector
for(int i=0; i < v.size(); +i){
cout << v[i] << endl;

}

prints 3

Vectors are template classes that require
a template argument when declared

The template argument is in <>s and
appears between the type name (vector)
and variable name (v)

Vectors can be accessed using an index
just like a regular array

 Sometimes we don't know how big a vector
should be

▪ e.g. because the size is dependent on user input

 Vectors can be created empty

▪ By not specifying any size

 New elements can be created

▪ Using the vector method push_back()

▪ Note that push_back can be used regardless of the
starting size of the vector

// Create an empty vector of doubles
vector <double> v;

// And insert some values
v.push_back(1.2);
v.push_back(3.7);
v.push_back(7.4);

// Now let's check how big the vector is
cout << "v's size is " << v.size(); prints 3

push_back and size are methods or member
functions, so must be preceded by the name of
the object and a dot (v.)

 Vectors have member functions

▪ Functions that belong to an object

▪ Also known as methods

▪ Many other objects have methods as well

 To use a member function

▪ Specify the object that the function belongs to

▪ By typing it's name and a dot .

▪ The member operator

▪ And then call the member function

 It is easy to use a for loop to traverse through
all of the elements of a vector

 For example, print all of v's values
for(int i=0; i < v.size(); i++){

cout << v[i] << endl;

}

 This is where the new C++ for loop is useful
for (int x : v) {

cout << x << endl;

}

 In reality programmers don't write sort functions
every time they want to sort something

▪ They use a library sorting function

▪ The STL has a sort function in the algorithm library
▪ #include <algorithm>

 The sort function can be used to sort pretty much any
container

▪ Including vectors and standard arrays

▪ It needs to know the start and end points
▪ And has an optional argument for how values should be compared

 Suppose that we have a vector, v that we want to sort

▪ sort(v.begin(), v.end());

▪ .begin() and .end() are iterators that point to the start

and end of the vector

▪ An iterator is a generalization of a pointer

 Now suppose that we want to sort an array of size n

▪ sort(arr, arr+n);

▪ The function takes two pointers, one to the start, and one

to one past the end of the array

 The C++ 11 standard introduced new pointer types

▪ Known as smart pointers

 These pointers are responsible for the memory

management of the data they point to

▪ That is, it is not necessary to call new or delete

 There are three types of smart pointer

▪ unique_ptr

▪ shared_ptr

▪ weak_ptr

Discussion of these pointers is out of the scope of
this course, see cplusplus or MSDN for reference

Or take CMPT 135 …

http://www.cplusplus.com/reference/memory/
https://msdn.microsoft.com/en-us/library/hh279674.aspx

