

 Integers and Characters
 Strings
 Input
 Formatted Output

 To date all we have seen are numeric data
types
▪ int, short, long, long long, ...

▪ float, double, ...

▪ char

▪ bool
 The char type stores a numeric code which is

translated to a character when appropriate
▪ And C++ treats them as numbers

 It’s easy to print the ASCII code for a character

▪ char ch = 'x';

▪ cout << "code for " << ch;

▪ cout << " = " << (int)ch;

 The first cout statement prints the letter that the code
represents

 The second cout statement prints the code

▪ After first being cast (converted) to an int

 C++ will also allow arithmetic to be performed on char
variables

▪ The underlying numeric codes are operated on

 Let’s say that we want to print all of the letters from A to Z

▪ We could write 26 cout statements

cout << 'A';

cout << 'B';

...

 Or we could do this
char ch = 'A';

while(ch < 'A' + 26){

cout << ch << endl;

ch++;

}

 We have used (character) strings in cout calls

▪ e.g. cout << "Hello World";

 It would also be useful to store strings in
variables

▪ And to get user input in the form of strings

 A string is a sequence of characters

▪ Distinguished from an individual character

▪ By being enclosed in ""s

 C++ has two kinds of types
▪ Base types
▪ int, char, float, bool, …

▪ Structs and Classes
▪ A variable of a class is referred to as an object

▪ Objects may store many values and may have methods

▪ A method is a function that belongs to a class

 string objects store and manipulate strings
▪ The string class is contained in the string library
▪ #include <string>

 Let’s write a program to find out the name
and age of the user

▪ And then print them

 We will store the name in a string object

▪ Use cin to get the input for the name

▪ And print it using cout

▪ Both cin and cout "know" what to do with string
data

#include <iostream>
#include <string>
using namespace std;

int main()
{

string name;
int age;

cout << "What is your name? ";
cin >> name;
cout << "What is your age? ";
cin >> age;

cout << "Your name is " << name;
cout << “, and your age is " << age;
return 0;

}

things to note

What is your name? Jenny

What is your age? 23

Your name is Jenny, and your age is 23

 The string class has a number of methods

▪ A method is a function that belongs to an object
variable

▪ Object methods can be accessed using the
member operator – a period (or dot, or full stop)

▪ Known as dot notation

 We are not going to spend much time using
methods in this course

▪ But one example is the string size method

 The structure that contains the characters in
a string is an array

▪ An array is a sequence of variables of the same
type

▪ Individual elements in an array can be accessed
with a numerical index

▪ Enclosed in []s following the name of the array

 String objects allow the individual characters
in the string to be accessed in this way

#include <iostream>
#include <string>
using namespace std;

const int ASCII_UC_LC = 32;

int main()
{

string song = "Bat Out of Hell";
string line = "The sirens are screaming, and the fires are howling";

cout << "song length = " << song.size() << endl;
cout << "line length = " << line.size() << endl;

for (int i = 0; i < line.size(); ++i) {
if (line[i] == 'e' || line[i] == 'g') {

line[i] -= ASCII_UC_LC;
}

}

cout << line;
return 0;

}

song length = 15

line length = 51

ThE sirEns arE scrEaminG, and thE firEs arE howlinG

Difference between ASCII code for 'a' and 'A'

Prints number of characters in each string

Iterates through the characters, changing
them to upper case if it is an 'e' or a 'g'

The index of the first character is 0

 As we’ve seen cin can be used to get input

▪ It works appropriately regardless of the data type

▪ Except that if you create your own classes cin will not
magically know what to do with them

▪ But you can give it this information

 But entering data of an incorrect data type
can result in errors

▪ It turns out that input is relatively complex

▪ Input is a common source of errors, and not just in C++

 Basic input checking is relatively straightforward

▪ For example, where the user is expected to enter a
number in a particular range

 Basic idea

▪ Use a loop with a condition that checks that the value
is within the desired range

▪ Prompt the user to enter a correct value in the loop
body

 But what happens if the user enters the wrong
type?

#include <iostream>
using namespace std;
int getIntInRange(int low, int high)

int main()
{

int x = getIntInRange(10, 100);
cout << "You entered: " << x << endl;
return 0;

}

int getIntInRange(int low, int high)
{

int result = low-1; //out of permitted range
while (result < low || result > high) {

cout << "Enter an int between " << low << " and " << high << ": ";
cin >> result;

}
return result;

}

Enter an int between 10 and 100: 23
You entered: 23

Valid Input

Enter an int between 10 and 100: 101
Enter an int between 10 and 100: -3
Enter an int between 10 and 100: 42
You entered: 42

Out of Range

Incorrect Type

(Infinite Loop)

 Both cin and cout access what are referred to

as streams

▪ A stream is a sequence of characters that are

processed by cin or cout

▪ For input or output

 What happens when you enter keyboard data?

▪ The program doesn't begin processing the input until

you press the Enter key

▪ Though this behaviour can be changed

 Whatever is typed is put in an input stream

▪ cin processes characters from the stream one at a time

▪ If cin is reading data into an int variable it will keep

reading integer characters from the stream

▪ With an optional – (minus) character as the first character

▪ Then the characters 0 to 9

 Any valid character is consumed

▪ Removed from the stream

▪ And cin only requests more data when the stream is

empty

 What happens when the user enters data that
can not be processed by cin?

▪ Characters that are invalid for a variable

 cin fails

▪ Nothing is read into the variable and

▪ No characters are consumed from the stream

▪ Our input function then tries again

▪ But the stream still contains the same characters

▪ cin attempts to insert them in the variable, and fails, …

 Once we know cin has failed we can fix the problem

▪ By throwing everything in the stream away

▪ And trying again

 But first we need to recognize that cin has failed
 Like a string variable cin is an object

▪ Of the istream class

▪ Which has its own methods
▪ Functions that belong to it

▪ One such function is .fail()
▪ Which returns true if cin is in a failed state

 There are two stages to fixing the input stream

▪ Clearing out the stream

▪ Resetting cin to a non failed state

 Use clear to reset the stream

▪ By calling cin.clear()

 Use ignore to clean out the stream

▪ cin.ignore(10000, '\n');

▪ Which removes the first n characters, stopping at the first
incidence of the second argument
▪ In the example: 10,000, ending when a newline is found

int getIntInRange(int low, int high)
{

int result = low -1; //out of permitted range
while (result < low || result > high) {

if (cin.fail()) {
cin.clear();
cin.ignore(10000, '\n');

}
cout << "Enter an int between " << low << " and " << high << ": ";
cin >> result;
}
return result;

}

These are all reasonable questions. This method isn't
going to work for every possible eventuality, but will
deal with the majority of console input issues

What if the user entered more than 10,000 characters?

What if input didn't end with a single newline character?

Isn't 10,000 a magic number that should be a constant?

 Our function doesn't gracefully deal with
every possible input problem

▪ Even if we assume that the call to ignore is going
to correctly handle clearing out the input stream

 It is usually good practice to clean out the
input stream after each call to cin

▪ In case the stream contains unwanted characters

int main()
{

int x = getIntInRange(10, 100);
cout << "You entered: " << x << endl;
int y = getIntInRange(3, 7);
cout << "You entered: " << y << endl;
return 0;

}

Notice that this is not a huge
problem as it does not make the
program crash (or go into an
infinite loop) but it is definitely
unattractive

This is a slightly different example that uses
the same input function twice

A reasonable question might be why did the user type 23cats

That doesn't really matter, as
eventually some user will do
something unexpected

Let's see what happens if the user
decides to enter something odd

We can fix this by cleaning out the input stream at the
end of the getIntInRange function

int getIntInRange(int low, int high)
{

int result = low -1; //out of permitted range
while (result < low || result > high) {

if (cin.fail()) {
cin.clear();
cin.ignore(10000, '\n');

}
cout << "Enter an int between " << low << " and " << high << ": ";
cin >> result;
}
cin.ignore(10000, '\n'); //clear input stream
return result;

}

Once the user has entered an appropriate value the
function clears out the input stream so that it is empty
and ready for its next use

 We have been using cout to print program
output

▪ Such output is not always formatted very
attractively

▪ Floating point numbers are printed to a default number
of decimal spaces

▪ Columns of output may not line up correctly

 There are a number of formatting options

▪ Contained in the <iomanip> library

 Precision sets the number significant digits

▪ Can be changed by calling setprecision(n)

▪ Where n is the number of significant digits to be displayed

▪ The function is called in cout

▪ cout << setprecision(3);

 If the number of digits to the right of the decimal

point is to be fixed

▪ Use both setprecision and fixed

cout << setprecision(2) << 3.14159;

displays: 3.1 – 2 significant digits

 Fixed notation displays values without an

exponent

▪ And with the number of digits to the right of the

decimal point set by the precision value

 To display numbers with two decimal places

▪ cout << fixed << setprecision(2);

 There are other formatting options

▪ Such as scientific

 It can be useful to set the output field width

▪ So that output can be printed in columns, with

values in rows lining up in columns

 The setw(n) function sets the field width

▪ Where n is the width of the field in characters

▪ Field width only applies to the output that

immediately follows the setw call

▪ Output is right justified within the field

 When setw is called output is right justified

within the output field

▪ By default the empty space is filled with spaces

▪ So that it appears blank

▪ The character that the empty space is filled with

can be changed

▪ By calling setfill(ch)

▪ Where ch is a character

cout << setw(8) << setfill('@') << "kate";

@@@@kate

 Write a program to print information about a

loan and its compound interest

▪ Column heading should be underlined

▪ Values should be to two decimal places

▪ Values in columns should line up correctly

