


 The type of all data used in a C++ program 
must be specified

▪ A data type is a description of the data being 
represented

▪ That is, a set of possible values and a set of operations 
on those values

 There are many different C++ types

▪ So far we’ve mostly seen ints and floats

▪ Which represent different types of numbers



 Integers are whole numbers

▪ Like 1, 7, 23567, -478

▪ There are numerous different integer types

▪ int, short, long , long long , unsigned int

▪ These types differ by size, and whether or not negative 
numbers can be represented

 Floating point numbers can have fractional parts

▪ Such as 234.65, -0.322, 0.71, 3.14159

▪ There are also different floating point types
▪ double, float, long double



 In addition to numbers it is common to 
represent text

▪ Text is made up of character sequences

▪ Often not just limited to a-z and A-Z

 The char type represents single characters

▪ To distinguish them from identifiers, characters 
are enclosed in single quotes

▪ char ch = 'a'

▪ Remember that strings are enclosed by ""s



 Boolean values represent the logical values 
true and false

▪ These are used in conditions to make decisions

 In C++ the bool type represents Boolean 
values

▪ The value 1 represents true, and the value 0 
represents false



 Numeric values (and bool values) do not have 
to be distinguished from identifiers

▪ Identifiers cannot start with a number or a –

 Representing large amounts of text with 
single characters would be cumbersome

▪ Text enclosed in ""s is referred to as a string

▪ A sequence of characters

▪ More on this later ...



 The purpose of a variable is to store data
 The type of a variable describes what kind of 

data is being stored

▪ An int stores whole numbers

▪ A char stores a single character

▪ And so on

 Why do we have to specify the type?



 When we communicate we generally don’t 
announce the type of data that we are using

▪ Since we understand the underlying meaning of 
the words we use in speech, and

▪ The symbols we use are unambiguous

 For example, do these common symbols 
represent words or numbers?

▪ eagle

▪ 256



 A computer has a much more limited system 
for representation

 Everything has to be represented as a series 
of binary digits

▪ That is 0s and 1s

 What does this binary data represent?

▪ 0110 1110 1111 0101 0001 1101 1110 0011

▪ It could be an integer, a float, a string, …

▪ But there is no way to determine this just by looking at it





 A single binary digit, or bit, is a single 0 or 1

▪ bit = binary digit

 Collections of bits of various sizes

▪ byte – eight bits, e.g. 0101 0010

▪ kB – kilobyte = 210 bytes = 1,024 bytes = 8,192 bits

▪ MB – megabyte = 220 bytes = 1,048,576 bytes
▪ = 8,388,608 bits

▪ GB – gigabyte = 230 bytes = 1,073,741,824 bytes
▪ = 8,589,934,592 bits

▪ TB – terabyte = 240 bytes



 Modern computer architecture uses binary to 
represent numerical values

▪ Which in turn represent data whether it be 
numbers, words, images, sounds, ...

 Binary is a numeral system that represents 
numbers using two symbols, 0 and 1

▪ Whereas decimal is a numeral system that 
represents numbers using 10 symbols, 0 to 9



 We usually count in base 10 (decimal)
▪ But we don’t have to, we could use base 8, 16, 13, or 2 (binary)

 What number does 101 represent?
▪ It all depends on the base (also known as the radix) used – in the 

following examples the base is shown as a subscript to the number

▪ 10110 = 10110 (wow!)

▪ i.e. 1*102 + 0*101 + 1*100 = 100 + 0 + 1 = 101

▪ 1018 = 6510 

▪ i.e. 1*82 + 0*81 + 1*80 = 64 + 0 + 1 = 65

▪ 10116 = 25710 

▪ i.e. 1*162 + 0*161 + 1*160 = 256 + 0 + 16 = 257

▪ 1012 = 510 

▪ i.e. 1*22 + 0*21 + 1*20 = 4 + 0 + 1 = 5



 What does 12,34510 represent?

▪ 1*104 + 2*103 + 3*102 + 4*101 + 5*100

 Or 12,34516?

▪ 1*164 + 2*163 + 3*162 + 5*161 + 5*160 = 74,56510

 And what about 11,0012?

▪ 1*24 + 1*23 + 0*22 + 0*21 + 1*20 = 2510

 The digit in each column is multiplied by the 
base raised to the power of the column number

▪ Counting from zero, the right-most column



base 10 104 (10,000) 103 (1,000) 102(100) 101 (10) 100 (1)

12,345 1 2 3 4 5

base 16 164 (65,536) 163 (4,096) 162(256) 161 (16) 160 (1)

12,345 1 2 3 4 5

base 2 24 (16) 23 (8) 22(4) 21 (2) 20 (1)

11,001 1 1 0 0 1



 Hexadecimal or base 16 has been used as an 
example of a number base

▪ It is often used as a convenient way to represent 
numbers in a computer system

▪ Since it is much more compact than binary

▪ And is easy to convert from binary

▪ By converting every four bits to a single hex digit

often abbreviated to hex



 For hexadecimal numbers we need symbols to represent 
values between 10 and 15

▪ 016 through 916 represent 010 through 910

▪ In addition we need symbols to represent the values between 
1010 and 1510

▪ Since each is a single hex digit

 We use letters

▪ A16 = 1010

▪ B16 = 1110

▪ …

▪ F16 = 1510

base 16 163 (4,096) 162(256) 161 (16) 160 (1)

BA2C B A 2 C

base 10 B A 2 C

47,660 45,056 2,560 32 12



 It is straightforward to convert from binary to 

hex and vice versa

▪ Consider the binary value 0110 1101

▪ This single byte equals 10910

▪ Or 6D in hex: 610* 1610 = 9610 + 1310 = 10910

▪ But we don’t have to convert the entire value in 

this way

▪ We can just convert every 4 bits to its hex representation



base 16 162 161 # of 16s 160 # of 1s

value … 0 to 240 (16 * 15) 0 to 15

10910 6 D

base 2 28 27 128 26 54 25 32 24 16 23 8 22 4 21 2 20 1

value … 0 or 128 0 0r 64 0 or 32 0 or 16 0 or 8 0 0r 4 0 or 2 0 or 1

10910
0 1 1 0 1 1 0 1

base 16 162 161 # of 16s 160 # of 1s

value … 0 to 240 (16 * 15) 0 to 15

base 2 28 27 128 26 54 25 32 24 16 23 8 22 4 21 2 20 1

value … 0 or 128 0 0r 64 0 or 32 0 or 16 0 or 8 0 0r 4 0 or 2 0 or 1

to determine the hex digit sum the 4 corresponding binary digits

6 (0 + 2 + 4 + 0) D (1 + 0 + 4 + 8)





 There is an obvious way to represent whole 
numbers in a computer

▪ Just convert the number to binary, and record the 
binary number in the appropriate bits in RAM

 However there are two broad sets of whole 
numbers

▪ Unsigned numbers

▪ Which must be positive

▪ Signed numbers 

▪ Which may be positive or negative



 Any variable type has a finite size

▪ This size sets an upper limit of the size of the 
numbers that can be stored

▪ The limit is dependent on how the number is 
represented

 Attempts to store values that are too large 
will result in an error

▪ The exact kind of error depends on what 
operation caused the overflow



 Just convert the number to binary and store it
▪ What is the largest positive number that can be 

represented in 32 bits?

▪ 1111 1111 1111 1111 1111 1111 1111 1111

▪ or 4,294,967,29510

23

229 = 536,870,912 + …

230 = 1,073,741,824 +

231 = 2,147,483,648 +



 Binary addition can be 
performed in the same way 
as decimal addition

 Though 12 + 12 = 102

▪ and 12 + 12 + 12 = 112

 But how do we perform 
subtraction, and how do 
we represent negative 
numbers?

▪ Since a – sign isn't a 1 or a 0 …

100001 33

+ 011101 + 29

111110 62



 Our only unit of storage is bits
 So the fact that a number is negative has to 

somehow be represented as a bit value

▪ i.e. as a 1 or a 0

 How would you do it?

▪ We could use one bit to indicate the sign of the 
number, signed integer representation



 Keep one bit (the left-most) to record the sign

▪ 0 means – and 1 means +

 But this is not a good representation

▪ It as two representations of zero

▪ Which seems weird and requires logic to represent both

▪ And wastes a bit pattern that could represent another value

▪ It requires special logic to deal with the sign bit and

▪ It makes implementing subtraction difficult and

▪ For reasons related to hardware efficiency we would 
like to avoid performing subtraction entirely



 There is an alternative way of representing 

negative numbers called radix complement

▪ That avoids using a negative sign!

 To calculate the radix complement you need to 

know the maximum size of the number

▪ That is, the maximum number of digits that a number 

can have

▪ And express all numbers using that number of digits

▪ e.g. with 4 digits express 23 as 0023



 Negative numbers are represented as the 
complement of the positive number

▪ The complement of a number, N, in n digit base b
arithmetic is: bn – N

 Let’s look at two base 10 examples, one using 2 digit 
arithmetic, and one 3 digit arithmetic

▪ complement of 24 in two digit arithmetic is:
▪ 102 – 24 = 76

▪ complement of 024 in three digit arithmetic is:
▪ 103 – 24 = 976



 Complements can be used to do subtraction
 Instead of subtracting a number add its 

complement 

▪ And ignore any number past the maximum 
number of digits

 Let’s calculate 49 – 17 using complements:

▪ We add 49 to the complement of 17

▪ The complement of 17 is 83

▪ 49 + 83 = 132, ignore the 1, and we get 32



 What did we just do?

▪ The complement of 17 in 2 digit arithmetic is 100 – 17 = 83

 And we ignored the highest order digit

▪ The 100 in 132 (from 49 + 83 = 132)

▪ That is, we took it away, or subtracted it

 So in effect 49 + complement(17) equals:

▪ 49 + (100 – 17) – 100 or

▪ 49 – 17



 So it looks like we can perform subtraction by 
just doing addition (using the complement)

 But there might be a catch here – what is it?

▪ To find the complement we had to do subtraction!

▪ but let’s go back to binary again



 In binary we can calculate the complement in 
a special way without doing any subtraction

▪ Pad the number with 0s up to the number of digits

▪ Flip all of the digits (1's become 0, 0's become 1's)

▪ Add 1

 Let's calculate 6 – 2 in 4 digit 2's complement 
arithmetic then check that it is correct 

▪ Note: no subtraction will be used!



6 in binary

2 in binary

0110

0010

flip the bits

add 1

add it to 6

result

ignore left digit

1101

1110

+ 1110

10100

0110

= 0100

 Calculate 6 – 2 in binary 
using 2’s complement in 
4 digit arithmetic

 The answer should be 4, 
or 0100 in binary

 Remember that a 
number has to be 
padded with zeros up to 
the number of digits (4 in 
this case) before flipping 
the bits



Base 10 Flip Bits Add 1 Base 10

000 0 111 (1)000 0

001 +1 110 111 -1

010 +2 101 110 -2

011 +3 100 101 -3

100 -4 011 100 -4

101 -3 010 011 +3

110 -2 001 010 +2

111 -1 000 001 +1



 32 bits is 2 * 31 bits

▪ We can use 31 - 1 bits for the positive numbers,

▪ 31 bits for the negative numbers, and 

▪ 1 bit for zero

 A range of 2,147,483,647 to –2,147,483,648

▪ 231 – 1 positive numbers,

▪ 231 negative numbers

▪ and 0



 To add two numbers x + y

▪ If x or y is negative calculate its 2’s complement

▪ Add the two numbers

▪ Check for overflow

▪ If both numbers have the same sign,

▪ But the result is a different sign then,

▪ There is overflow and the resulting number is too big to be 
represented!

 To subtract one number from another x - y

▪ Calculate x + 2’s complement (y)



 Here are examples of signed integer types

▪ short (16 bits)

▪ −32,768 to +32,767

▪ int (32 bits)

▪ −2,147,483,648 to +2,147,483,647

▪ long long (64 bits)

▪ −9,223,372,036,854,775,808 to 
+9,223,372,036,854,775,807



 It is not possible to represent every floating 
point number within a certain range

▪ Why not?

 Floating point numbers can be represented 
by a mantissa and an exponent

▪ e.g. 1.24567 * 103, or 1,245.67

▪ mantissa = 0.124567

▪ exponent = 4



 The mantissa and exponent are represented 
by some number of bits

▪ Dependent on the size of the type

▪ The represented values are evenly distributed 
between 0 and 0.999...

 For example, a 32 bit (4 byte) float

▪ mantissa: 23 bits

▪ exponent: 8 bits

▪ sign bit: 1 bit



 There are only two Boolean values

▪ True

▪ False

 Therefore only one bit is required to 
represent Boolean data

▪ 0 represents false

▪ 1 represents true



 How many characters do we need to 
represent?

▪ A to Z, a to z, 0 to 9, and

▪ `!@#$%^&*()-=_+[]{}\|;’:”<,>./?

 So how many bits do we need?

▪ 26 + 26 + 10 + 31 = 93



 Each character can be given a different value 
if represented in an 8 bit code 

▪ so 28 or 256 possible codes

 This code is called ASCII

▪ American Standard Code for Information 
Interchange

▪ e.g. m = 109, D = 68, 0 = 111



 Unicode is an alternative to ASCII
 It can represent thousands of symbols
 This allows characters from other alphabets 

to be represented



 To represent a string use a sequence made up 
of the codes for each character

 So the string representing Doom would be:

▪ 01000100 01101111 01101111 01101101

▪ 010001002 = 6810 which represents D

▪ 011011112 = 11110 which represents o

▪ 011011112 = 11110 which represents o

▪ 01101101 2 = 10910 which represents m

 There is more to this as we will discover later



 Remember this number from the last slide?

▪ 01000100 01101111 01101111 01101101

▪ That represented “Doom” 

▪ Or did it?

▪ Maybe it is actually an integer!

▪ In which case it represents the number 1,148,153,709

 This is why C++ needs to keep track of types
to know what the bits actually represent



 What about colours?


