Types and Representation

C++ Types

The type of all data used in a C++ program
must be specified

A data type is a description of the data being
represented

That is, a set of possible values and a set of operations
on those values

There are many different C++ types

So far we've mostly seen ints and floats
Which represent different types of numbers

Numeric Types

Integers are whole numbers
Like 1, 7, 23567, -478
There are numerous different integer types

I/ I/ I/)
These types differ by size, and whether or not negative
numbers can be represented

Floating point numbers can have fractional parts
Such as 234.65, -0.322, 0.71, 3.14159
There are also different floating point types

I/ I/

Characters

In addition to numbers itis common to
represent text

Text is made up of character sequences
Often not just limited to a-zand A-Z
The type represents single characters

To distinguish them from identifiers, characters
are enclosed in single quotes

char ch = 'a

Remember that strings are enclosed by "'s

Booleans

Boolean values represent the logical values

true and false

These are used in conditions to make decisions
In C++ the type represents Boolean
values

The value 1 represents true, and the value o
represents false

More About Types

Numeric values (and bool values) do not have
to be distinguished from identifiers

Identifiers cannot start with a number ora -
Representing large amounts of text with
single characters would be cumbersome

Text enclosed in ""s is referred to as a string
A sequence of characters

More on this later ...

Variables and Types

The purpose of a variable is to store data
The type of a variable describes what kind of
data is being stored

An int stores whole numbers

A char stores a single character

And so on
Why do we have to specify the type?

(Human) Language and Types

When we

communicate we generally don't

announce the type of data that we are using

Since we understand the underlying meaning of

the wora

The sym
For exam

s we use in speech, and
bols we use are unambiguous

nle, do these common symbols

represent words or numbers?

eagle
256

Computers and Types

A computer has a much more limited system
for representation
Everything has to be represented as a series
of binary digits

Thatis osand 1s
What does this binary data represent?

0110 1110 1111 0101 0001 1101 1110 0011

It could be an integer, a float, a string, ...
But there is no way to determine this just by looking at it

Bits and Bytes

A single binary digit, or bit, isa single o or 1
bit = binary digit
Collections of bits of various sizes
byte — eight bits, e.g. 0101 0010
kB — kilobyte = 22° bytes = 1,024 bytes = 8,192 bits
MB — megabyte = 22° bytes = 1,048,576 bytes
= 8,388,608 bits
GB - gigabyte = 23° bytes = 1,073,741,824 bytes
= 8,589,934,592 bits
TB —terabyte = 24° bytes

Binary Digression

Modern computer architecture uses binary to
represent numerical values

Which in turn represent data whether it be
numbers, words, images, sounds, ...
Binary is a numeral system that represents
numbers using two symbols, 0 and 1

Whereas decimal is a numeral system that
represents numbers using 10 symbols, o to g

Number Bases

We usually count in base 10 (decimal)

But we don’t have to, we could use base 8, 16, 13, or 2 (binary)
What number does 101 represent?

It all depends on the base (also known as the radix) used —in the
following examples the base is shown as a subscript to the number

— |
101,, = 101,, (wow!)
l.e.1*¥10% + 0*10* + 1¥10° =100+ 0 + 1 =101
101g = 65_,
l.e.1*¥82+ 0*8* +1*8°=64+0+1=65
101, = 257.,
l.e.1%162 + 0*16* + 1*16° =256 + 0 + 16 = 257

101, = 546

l.e.1%22+ 0*2*+1%2°=4+0+1=5

More Examples

What does 12,345, represent?

1%10% + 2%103 + 3%10% + 4%10* + 5*10°
Or 12,345,¢7

1%16% + 2%163 + 3%162 + 5*16 + 5*16° = 74,565
And what about 11,001,7

1%24 +1%23 + 0%22 + 0%¥2* +1%2° = 25__
The digitin each column is multiplied by the
base raised to the power of the column number

Counting from zero, the right-most column

More Examples in Columns

12,345 1 2 3 4 5

12,345 1 2 3 4 5

11,001 1 1 o) o) 1

Hexadecimal

Hexadecimal or base 16 has been used as an
example Of a number base often abbreviated to hex

It is often used as a convenient way to represent
numbers in a computer system

Since it is much more compact than binary
And is easy to convert from binary

By converting every four bits to a single hex digit

Representing Hexadecimal

For hexadecimal numbers we need symbols to represent
values between 10 and 15

0, through g . represent o, through g_,

In addition we need symbols to represent the values between
10,,and 15,
Since each is a single hex digit

We use letters
A16 = 1010

BA2C B A 2 C
B16 = 1110

F16 =15 47,660 45,056 2,560 32 12

Binary to Hex

It is straightforward to convert from binary to
hex and vice versa

Consider the binary value 0110 1101

This single byte equals 109_,

Or 6D in hex: 6_*16 =96, +13,, =109,
But we don’t have to convert the entire value in
this way

We can just convert every 4 bits to its hex representation

Binary to Hex

value oori28 oor64 oor32 oori6b oor8 oor4 o00Or2 oori

109, o} 1 1 o) 1 1 o) 1

to determine the hex digit sum the 4 corresponding binary digits

value 0t0 240 (16 * 15) otoig

109,, 6 D

Representation

Representing Integers

There is an obvious way to represent whole
numbers in a computer

Just convert the number to binary, and record the

binary number in the appropriate bits in RAM
However there are two broad sets of whole
numbers

Unsigned numbers

Which must be positive
Signed numbers

Which may be positive or negative

Large Numbers

Any variable type has a finite size

This size sets an upper limit of the size of the
numbers that can be stored

The limit is dependent on how the number is
represented

Attempts to store values that are too large
will result in an error

The exact kind of error depends on what
operation caused the overflow

Representing Unsigned Numbers

Just convert the number to binary and store it

What is the largest positive number that can be
represented in 32 bits?

1111 11113131711 1111 17111 1313171 1313171 11311

NN

23" = 2,147,483,648 +
\ S

23° =1,073,741,824 +

N

Ol 4,294, 9671 295,

229 = 536,870,912 + ...

Adding Unsigned Numbers

Binary addition can be 100001 33
performed in the same way + 011101 + 29
as decimal addition 111110 62

Though 1, +1, =10,
and1,+1,+1,=11,

But how do we perform

subtraction, and how do

we represent negative

numbers?

Sincea-signisn'taiorao...

Representing Signed Numbers

Our only unit of storage is bits

So the fact that a number is negative has to

somehow be represented as a bit value
l.e.asai1orao

How would you do it?

We could use one bit to indicate the sign of the
number, signed integer representation

Signed Integer Representation

Keep one bit (the left-most) to record the sign

0 means —and 1 means +
But this is not a good representation

It as two representations of zero
Which seems weird and requires logic to represent both
And wastes a bit pattern that could represent another value

It requires special logic to deal with the sign bit and

It makes implementing subtraction difficult and

For reasons related to hardware efficiency we would
like to avoid performing subtraction entirely

More on Negative Numbers

There is an alternative way of representing

negative numbers called radix complement
That avoids using a negative sign!

To calculate the radix complement you need to

know the maximum size of the number

That is, the maximum number of digits that a number
can have

And express all numbers using that number of digits

e.g. with 4 digits express 23 as 0023

Radix Complement

Negative numbers are represented as the
complement of the positive number

The complement of a number, N, in n digit base b
arithmeticis: 6"-N
Let's look at two base 10 examples, one using 2 digit
arithmetic, and one 3 digit arithmetic
complement of 24 in two digit arithmetic is:
102 —24 =76
complement of 024 in three digit arithmetic is:
103 —24 =976

Complement Subtraction

Complements can be used to do subtraction
Instead of subtracting a number add its
complement

And ignore any number past the maximum
number of digits

Let’s calculate 49 — 17 using complements:
We add 49 to the complement of 17

The complement of 17 is 83

49 + 83 =132, ignore the 1, and we get 32

Huh!

What did we just do?

The complement of 17 in 2 digit arithmetic is 200 — 17 = 83
And we ignored the highest order digit

The 100 in 132 (from 49 + 83 = 132)
That is, we took it away, or subtracted it

So in effect 49 + complement(17) equals:
49 + (100 —17) — 100 Or

49 —17

So it looks like we can perform subtraction by
just doing addition (using the complement)
But there might be a catch here —what s it?

To find the complement we had to do subtraction!

T

but let’s go back to binary again

Two’s Complement

In binary we can calculate the complement in
a special way without doing any subtraction
Pad the number with os up to the number of digits

Flip all of the digits (1's become o, 0's become 1's)

Add 1
Let's calculate 6 — 2 in 4 digit 2's complement
arithmetic then check that it is correct

Note: no subtraction will be used!

2's Complement Example

Calculate 6 — 2 in binary

using 2's complementin 6 in binary 0110

4 digit arithmetic 2 inbinary oo10

The answer should be 4, flip the bits 1101

or 0100 in binary 2dd1 1110

Remember that a _

number has to be additto6 ¥l 1119
result 10100

padded with zeros up to
the number of digits (4 in = ignore left digit
this case) before flipping

the bits

0100

3 Bit 2’s Complement

000 0 111 (1)oo0 o)
001 +1 110 111 -1
010 +2 101 110 -2
011 +3 100 101 -3
100 -4 011 100 -4
101 -3 010 011 +3
110 -2 001 010 +2

111 -1 000 001 +1

32 bit 2’s Complement

32 bitsis 2 * 31 bits
We can use 31 - 1 bits for the positive numbers,
31 bits for the negative numbers, and
1 bit for zero

Arange of 2,147,483,647 t0 —2,147,483,648
231 —1 positive numbers,
23 negative numbers
and o

2's Complement Arithmetic

To add two numbers x + y

If x or y is negative calculate its 2's complement
Add the two numbers

Check for overflow
If both numbers have the same sign,
But the result is a different sign then,

There is overflow and the resulting number is too big to be
represented!

To subtract one number from another x - y
Calculate x + 2’s complement (y)

Signed Integers

Here are examples of signed integer types

short (16 bits)

-32,768 to +32,767
int (32 bits)

-2,147,483,648 10 +2,147,483,647
long long (64 bits)

-9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

Floating Point Numbers

It is not possible to represent every floating
point number within a certain range

Why not?
Floating point numbers can be represented
by a mantissa and an exponent

e.g. 1.24567 * 103, or 1,245.67

mantissa = 0.124567

exponent = 4

Representing Floats

The mantissa and exponent are represented
by some number of bits
Dependent on the size of the type

The represented values are evenly distributed
between o and 0.999...

For example, a 32 bit (4 byte) float
mantissa: 23 bits
exponent: 8 bits
sign bit: 1 bit

Boolean Values

There are only two Boolean values
True
False
Therefore only one bit is required to
represent Boolean data
o represents false
1 represents true

Character Representation

How many characters do we need to
represent?
AtoZ,atoz otog, and
T@#$WN&*()-=_+[1{\[;":"<,>./?
So how many bits do we need?
26 +26+10+31=93

Letter Codes

Each character can be given a different value
if represented in an 8 bit code

so 28 or 256 possible codes

This code is called ASCII

American Standard Code for Information
Interchange

e.g-m=109, D=68,0=111

Unicode

Unicode is an alternative to ASCII
It can represent thousands of symbols
This allows characters from other alphabets

to be represented

Strings

To represent a string use a sequence made up
of the codes for each character

So the string representing Doom would be:

01000100 01101111 01101111 01101101
01000100, = 68_, which represents D
01101111, = 111, which represents o
01101111, = 111, Which represents o
01101101, = 109,, Which represents m
There is more to this as we will discover later

Back to Types

Remember this number from the last slide?
0100010001101111 01101111 01101101

That represented "Doom”
Ordid it?
Maybe it is actually an integer!
In which case it represents the number 1,148,153,709

This is why C++ needs to keep track of types
to know what the bits actually represent

More Representation

What about colours?

