Types and Representation

C++ Types

- The type of all data used in a C++ program must be specified
 - A data type is a description of the data being represented
 - That is, a set of possible values and a set of operations on those values
- There are many different C++ types
 - So far we've mostly seen *ints* and *floats*
 - Which represent different types of numbers

Numeric Types

- Integers are whole numbers
 - Like 1, 7, 23567, -478
 - There are numerous different integer types
 - int, short, long, long long, unsigned int
 - These types differ by size, and whether or not negative numbers can be represented

Floating point numbers can have fractional parts

- Such as 234.65, -0.322, 0.71, 3.14159
- There are also different floating point types
 - double, float, long double

Characters

- In addition to numbers it is common to represent text
 - Text is made up of character sequences
 - Often not just limited to a-z and A-Z
- The char type represents single characters
 - To distinguish them from identifiers, characters are enclosed in single quotes
 - char ch = 'a'
 - Remember that strings are enclosed by ""s

Booleans

- Boolean values represent the logical values true and false
 - These are used in conditions to make decisions
- In C++ the bool type represents Boolean values
 - The value 1 represents true, and the value o represents false

More About Types

- Numeric values (and bool values) do not have to be distinguished from identifiers
 - Identifiers cannot start with a number or a –
- Representing large amounts of text with single characters would be cumbersome
 - Text enclosed in ""s is referred to as a string
 - A sequence of characters
 - More on this later ...

Variables and Types

- The purpose of a variable is to store data
 The *type* of a variable describes what kind of data is being stored
 - An *int* stores whole numbers
 - A *char* stores a single character
 - And so on
- Why do we have to specify the type?

(Human) Language and Types

- When we communicate we generally don't announce the type of data that we are using
 - Since we understand the underlying meaning of the words we use in speech, and
 - The symbols we use are unambiguous
- For example, do these common symbols represent words or numbers?
 - eagle
 - 256

Computers and Types

- A computer has a much more limited system for representation
- Everything has to be represented as a series of binary digits
 - That is os and 1s
- What does this binary data represent?
 - 0110 1110 1111 0101 0001 1101 1110 0011
 - It could be an integer, a float, a string, ...
 - But there is no way to determine this just by looking at it

Numbers

Bits and Bytes

- A single binary digit, or bit, is a single o or 1
 - bit = binary digit
- Collections of bits of various sizes
 - byte eight bits, e.g. 0101 0010
 - kB kilobyte = 2¹⁰ bytes = 1,024 bytes = 8,192 bits
 - MB megabyte = 2²⁰ bytes = 1,048,576 bytes
 - = 8,388,608 bits
 - GB gigabyte = 2³⁰ bytes = 1,073,741,824 bytes
 - = 8,589,934,592 bits
 - TB terabyte = 2⁴⁰ bytes

Binary Digression

- Modern computer architecture uses binary to represent numerical values
 - Which in turn represent data whether it be numbers, words, images, sounds, ...
- Binary is a numeral system that represents numbers using two symbols, o and 1
 - Whereas decimal is a numeral system that represents numbers using 10 symbols, 0 to 9

Number Bases

- We usually count in base 10 (decimal)
 - But we don't have to, we could use base 8, 16, 13, or 2 (binary)
- What number does 101 represent?
 - It all depends on the base (also known as the radix) used in the following examples the base is shown as a subscript to the number

• i.e. 1*16² + 0*16¹ + 1*16⁰ = 256 + 0 + 16 = **257**

More Examples

- What does 12,345₁₀ represent?
 - $1^{10^{4}} + 2^{10^{3}} + 3^{10^{2}} + 4^{10^{1}} + 5^{10^{0}}$
- Or 12,345₁₆?
 - 1*16⁴ + 2*16³ + 3*16² + 5*16¹ + 5*16⁰ = 74,565₁₀
- And what about 11,001₂?
 - **1**^{*}2⁴ + 1^{*}2³ + 0^{*}2² + 0^{*}2¹ + 1^{*}2⁰ = 25₁₀
- The digit in each column is multiplied by the base raised to the power of the column number
 - Counting from zero, the right-most column

More Examples in Columns

base 10	104 (10,000)	10 ³ (1,000)	10 ² (100)	10 ¹ (10)	10° (1)
12,345	1	2	3	4	5

base 16	16 ⁴ (65,536)	16 ³ (4,096)	16²(256)	16 ¹ (16)	16º (1)
12,345	1	2	3	4	5

base 2	24 (16)	2 ³ (8)	2²(4)	21 (2)	2° (1)
11,001	1	1	0	0	1

Hexadecimal

- Hexadecimal or base 16 has been used as an example of a number base
 often abbreviated to hex
 - It is often used as a convenient way to represent numbers in a computer system
 - Since it is much more compact than binary
 - And is easy to convert from binary
 - By converting every four bits to a single hex digit

Representing Hexadecimal

- For hexadecimal numbers we need symbols to represent values between 10 and 15
 - o₁₆ through 9₁₆ represent o₁₀ through 9₁₀
 - In addition we need symbols to represent the values between 10₁₀ and 15₁₀
 - Since each is a single hex digit
- We use letters

• $A_{16} = 10_{10}$

• $B_{16} = 11_{10}$

• $F_{16} = 15_{10}$

...

base 16	16 ³ (4,096)	16²(256)	16º (16)	16º (1)
BA2C	В	А	2	С
base 10	В	Α	2	С
	45.056			10
4/,660	45,050	2,560	32	12

Binary to Hex

- It is straightforward to convert from binary to hex and vice versa
 - Consider the binary value 0110 1101
 - This single byte equals 10910
 - Or 6D in hex: $6_{10} * 16_{10} = 96_{10} + 13_{10} = 109_{10}$
 - But we don't have to convert the entire value in this way
 - We can just convert every 4 bits to its hex representation

Binary to Hex

base 2	2 ⁸	2 ⁷ 128	2 ⁶ 54	2 ⁵ 32	2 ⁴ 16	2 ³ 8	2 ² 4	2 ¹ 2	2 ⁰ 1
value		0 or 128	o or 64	0 or 32	0 or 16	o or 8	0 or 4	0 Or 2	0 Or 1
10910		0	1	1	0	1	1	0	1
		6 (0 + 2 + 4 + 0)				D (1 + 0	+ 4 + 8)		

to determine the hex digit sum the 4 corresponding binary digits

base 16	16²	16 ¹ # of 165	16° # of 15
value		0 to 240 (16 * 15)	0 to 15
10910		6	D

Representation

Representing Integers

- There is an obvious way to represent whole numbers in a computer
 - Just convert the number to binary, and record the binary number in the appropriate bits in RAM
- However there are two broad sets of whole numbers
 - Unsigned numbers
 - Which must be positive
 - Signed numbers
 - Which may be positive or negative

Large Numbers

- Any variable type has a finite size
 - This size sets an upper limit of the size of the numbers that can be stored
 - The limit is dependent on how the number is represented
- Attempts to store values that are too large will result in an error
 - The exact kind of error depends on what operation caused the overflow

Representing Unsigned Numbers

- Just convert the number to binary and store it
 - What is the largest positive number that can be represented in 32 bits?

Adding Unsigned Numbers

- Binary addition can be performed in the same way as decimal addition
- Though $1_2 + 1_2 = 10_2$
 - and $1_2 + 1_2 + 1_2 = 11_2$
- But how do we perform subtraction, and how do we represent negative numbers?
 - Since a sign isn't a 1 or a 0 …

	100001		33
+	011101	+	29
	111110		62

Representing Signed Numbers

- Our only unit of storage is bits
- So the fact that a number is negative has to somehow be represented as a bit value
 - i.e. as a 1 or a o
- How would you do it?
 - We could use one bit to indicate the sign of the number, signed integer representation

Signed Integer Representation

- Keep one bit (the left-most) to record the sign
 - o means and 1 means +
- But this is not a good representation
 - It as two representations of zero
 - Which seems weird and requires logic to represent both
 - And wastes a bit pattern that could represent another value
 - It requires special logic to deal with the sign bit and
 - It makes implementing subtraction difficult and
 - For reasons related to hardware efficiency we would like to avoid *performing* subtraction entirely

More on Negative Numbers

- There is an alternative way of representing negative numbers called *radix complement*
 - That avoids using a negative sign!
- To calculate the radix complement you need to know the maximum size of the number
 - That is, the maximum number of digits that a number can have
 - And express all numbers using that number of digits
 - e.g. with 4 digits express 23 as 0023

Radix Complement

- Negative numbers are represented as the complement of the positive number
 - The complement of a number, N, in n digit base b arithmetic is: bⁿ – N
- Let's look at two base 10 examples, one using 2 digit arithmetic, and one 3 digit arithmetic
 - complement of 24 in two digit arithmetic is:
 - $10^2 24 = 76$
 - complement of o24 in three digit arithmetic is:
 - 10³ 24 = 976

Complement Subtraction

- Complements can be used to do subtraction
 Instead of subtracting a number *add* its complement
 - And ignore any number past the maximum number of digits
- Let's calculate 49 17 using complements:
 - We *add* 49 to the *complement* of 17
 - The complement of 17 is 83
 - 49 + 83 = 132, ignore the 1, and we get 32

Huh!

- What did we just do?
 - The complement of 17 in 2 digit arithmetic is 100 17 = 83
- And we ignored the highest order digit
 - The 100 in 132 (from 49 + 83 = 132)
 - That is, we took it away, or subtracted it
- So in effect 49 + complement(17) equals:
 - 49 + (100 17) 100 or
 - 49 17

But ...

- So it looks like we can perform subtraction by just doing addition (using the complement)
- But there might be a catch here what is it?
 - To find the complement we had to do subtraction!

but let's go back to binary again

Two's Complement

- In binary we can calculate the complement in a special way without doing any subtraction
 - *Pad* the number with os up to the number of digits
 - Flip all of the digits (1's become o, o's become 1's)
 - Add 1
- Let's calculate 6 2 in 4 digit 2's complement arithmetic then check that it is correct
 - Note: no subtraction will be used!

2's Complement Example

- Calculate 6 2 in binary using 2's complement in 4 digit arithmetic
- The answer should be 4, or o100 in binary
- Remember that a number has to be padded with zeros up to the number of digits (4 in i this case) before flipping the bits

0110	6 in binary
0010	2 in binary
1101	flip the bits
1110	add 1
+ 1110	add it to 6
10100	result
= 0100	gnore left digit

3 Bit 2's Complement

	Base 10	Flip Bits	Add 1	Base 10
000	0	111	(1)000	0
001	+1	110	111	-1
010	+2	101	110	-2
011	+3	100	101	-3
100	-4	011	100	-4
101	-3	010	011	+3
110	-2	001	010	+2
111	-1	000	001	+1

32 bit 2's Complement

32 bits is 2 * 31 bits

- We can use 31 1 bits for the positive numbers,
- 31 bits for the negative numbers, and
- 1 bit for zero
- A range of 2,147,483,647 to -2,147,483,648
 - 2³¹ 1 positive numbers,
 - 2³¹ negative numbers
 - and o

2's Complement Arithmetic

- To add two numbers x + y
 - If x or y is negative calculate its 2's complement
 - Add the two numbers
 - Check for overflow
 - If both numbers have the same sign,
 - But the result is a different sign then,
 - There is overflow and the resulting number is too big to be represented!
- To subtract one number from another x y
 - Calculate x + 2's complement (y)

Signed Integers

- Here are examples of signed integer types
 - short (16 bits)
 - -32,768 to +32,767
 - int (32 bits)
 - -2,147,483,648 to +2,147,483,647
 - Iong long (64 bits)
 - -9,223,372,036,854,775,808 to
 +9,223,372,036,854,775,807

Floating Point Numbers

- It is not possible to represent every floating point number within a certain range
 - Why not?
- Floating point numbers can be represented by a *mantissa* and an *exponent*
 - e.g. 1.24567 * 10³, or 1,245.67
 - mantissa = 0.124567
 - exponent = 4

Representing Floats

- The mantissa and exponent are represented by some number of bits
 - Dependent on the size of the type
 - The represented values are evenly distributed between o and 0.999...
- For example, a 32 bit (4 byte) *float*
 - mantissa: 23 bits
 - exponent: 8 bits
 - sign bit: 1 bit

Boolean Values

- There are only two Boolean values
 - True
 - False
- Therefore only one bit is required to represent Boolean data
 - o represents false
 - 1 represents true

Character Representation

- How many characters do we need to represent?
 - A to Z, a to z, o to 9, and
 - `!@#\$%^&*()-=_+[]{}\|;':"<,>./?
- So how many bits do we need?
 - 26 + 26 + 10 + 31 = 93

Letter Codes

- Each character can be given a different value if represented in an 8 bit code
 - so 2⁸ or 256 possible codes
- This code is called ASCII
 - American Standard Code for Information Interchange
 - e.g. m = 109, D = 68, o = 111

Unicode

- Unicode is an alternative to ASCII
- It can represent thousands of symbols
- This allows characters from other alphabets to be represented

Strings

- To represent a string use a sequence made up of the codes for each character
- So the string representing Doom would be:
 - 01000100 01101111 01101111 01101101
 - $01000100_2 = 68_{10}$ which represents D
 - 01101111₂ = 111₁₀ which represents o
 - $01101111_2 = 111_{10}$ which represents 0
 - 01101101 $_{2}$ = 109 $_{10}$ which represents m

There is more to this as we will discover later

Back to Types

- Remember this number from the last slide?
 - 01000100 01101111 01101111 01101101
 - That represented "Doom"
 - Or did it?
 - Maybe it is actually an integer!
 - In which case it represents the number 1,148,153,709
- This is why C++ needs to keep track of types to know what the bits actually represent

More Representation

What about colours?