

 Basic memory model
 Using functions
 Writing functions

▪ Basics

▪ Prototypes

▪ Parameters

▪ Return types

 Functions and memory
 Names and namespaces

 When a program runs it requires
main memory (RAM) space for

▪ Program instructions (the program)

▪ Data required for the program

 There needs to be a system for
efficiently allocating memory

▪ We will only consider how memory is
allocated to program data (variables)

code
storage

data storage

 We will often refer to main memory

▪ By which we mean RAM or random-access
memory

▪ RAM is both readable and writable

 RAM can be thought of as a (very long)
sequence of bits

▪ In this simplified model we will number this
sequence in bytes

 RAM is a long sequence of bytes

▪ Starting with 0

▪ Ending with the amount of main memory (-1)

 RAM is addressable and supports random
access

▪ That is, we can go to byte 2,335,712 without
having to visit all the preceding bytes

0 1 2 3 4 5 6 7 8

… 1073741816 1073741817 1073741818 1073741819 1073741820 1073741821 1073741822 1073741823

1 GB = 1,073,741,824 bytesConsider a computer with 1GB of RAM

Note – this is a simplified and abstract model

9 10 11 12 13 14 15 16 …

RAM can be considered as a sequence of bytes, addressed by their position

 Declaring a variable reserves space for the
variable in main memory

▪ The amount of space is determined by the type

 The name and location of variables are
recorded in the symbol table

▪ The symbol table is also stored in RAM

▪ The symbol table allows the program to find the
address of variables

▪ We will pretty much ignore it from now on!

data

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

For simplicity's sake assume that each address is in bytes and
that memory allocated to the program starts at byte 2048

int x, y;

x = 223;

x = 17;

Creates entries in the symbol
table for x and y

data

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

data 223

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

data 17

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

These lines change the values stored in x and
y, but do not change the location or amount of
main memory that has been allocated

variable address

x 2048

y 2052

y = 3299;

data 17 3299

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

 There are two things that we might wish to find out
about a variable

 Most of the time we just want to find what value is
stored in a variable

▪ By the end of the previous example the variable x had the
value 17 stored in it

 Sometimes we* might want to know where a variable
is located – its address

▪ The address of x was 2,048
▪ *OK, we probably don’t want to know this, but a program might

need this information

 Variables are stored in main memory in
sequence

▪ We can find out the value of a variable

▪ And its address

▪ To retrieve the address write the variable name preceded by
an ampersand (&)

 The value of a variable can be changed by
assignment

▪ But its storage location and the amount of memory
allocated to a variable cannot change

 We can use cout to print the value of a variable,

or its address

▪ int x = 12;

▪ cout << "x = " << x << endl;;

▪ cout << "x's address = " << &x << endl;

 Here is another example

▪ float y = 2.13;

▪ cout << "y = " << x << endl;

▪ cout << "y's address = " << &y << endl;

I wouldn't usually use x or y as the name of a
variable since it doesn't convey any meaning, but in
this example they are just arbitrary values

This just shows that we can access the
address of a variable, printing the
address like this is not generally useful

 Library functions are often used in C++

▪ For example, the cmath library contains
mathematical functions

▪ Such as sqrt and pow

 When a function is called in a program the
function code is executed

▪ And the return value of the function (if any)
replaces the function call (or invocation)

// Prints the area of a circle
#include <iostream>
#include <cmath>
#include <iomanip>

using namespace std;

// Define Pi
const double = PI 3.14159265;

// Main program – next slide!
int main(){

// ...
}

int main(){
float radius;
float area;
// Get keyboard input

cout << "Please enter the radius: ";

cin >> radius;

// Calculate area

area = PI * pow(radius, 2);

// Print output

cout << fixed << setprecision(2);

cout << "The circle's area is " << area << endl;

return 0;
}

Sets decimal places to 2

Function call

area = PI * pow(radius, 2);

function name arguments to the function

the function executes, and it is
replaced by the result that it returns

 Function calls in statements have precedence
over most other operations

▪ Such as arithmetic or comparisons

▪ A function is executed and its result returned
before other operations are performed

 Many functions need input

▪ Data passed to a function are referred to as
arguments

▪ The number and type of arguments must match
what is expected by the function

 Failing to give appropriate arguments results
in a compilation error

area = PI * pow("fred", 2);

the error message will vary by compiler

no instance of overloaded function "pow" matches the argument list

 When a function is called, program execution
switches to the function

▪ Each line of code in the function is executed in
turn until

▪ The last line is reached, or

▪ A return statement is processed

 Execution then returns to the line of code
where the function was called from

▪ The function call is replaced by the return value

 As well as using library functions, we can
write our own functions

▪ This is very useful as it increases the modularity of
programs

▪ Functions can be written and tested in isolation

 It is good programming style to write many
small functions

 Consider the calculation to find the greatest
common divisor (gcd) of two integers

▪ Which was used in a previous example to simplify
fractions

▪ This calculation might be useful in other places in
a larger program

▪ Or in other programs

function body

return type
parameter list

function name

function header

return statement

int gcd(int a, int b)
{

while(a != b)
{

if(a > b){
a = a-b;

}else{
b = b-a;

}
}
return a;

}

 Functions have two parts

▪ A header (or declaration)

▪ Return type of the function

▪ Function name

▪ Function parameter list

▪ A body (or definition)

▪ The executable statements or implementation of the
function

▪ The value in the return statement (if any) must be the
same type as the function's return type

 Function's names are identifiers, so must
follow identifier rules

▪ Only contain a to z, A to Z, _, 0-9

▪ Must start with a to z, A to Z

 By convention, function names should

▪ Start with a lower case letter

▪ They can be distinguished from variables by their
parameter lists (brackets)

▪ Have meaningful names

 Not all functions need to return a value

▪ For example a function to print instructions

 Functions that return nothing should be given
a return type of void

▪ A function that returns nothing (void) cannot be
used in an assignment statement

 Void functions are often used for output

 Every function must have a parameter list

▪ The parameter list consists of ()s which follow the
function name

▪ Parameter lists contain function input

▪ A parameter list can be empty, but the brackets
are still required when the function is defined

 Whenever a function is called (used) it also
must be followed by brackets

▪ Again, even if they are empty

#include <iostream>

void hi(){

std::cout("hello world");
}

int main (){

hi();

return 0;
}

Noy very useful, but imagine it prints the
instructions for a console application.

 A function that is written in a .cpp file can be
used in that file

▪ Just like a library function

 The function must be declared before it is
used, either by

▪ Defining the function, or

▪ Writing a forward declaration, and defining it later

▪ Also referred to as a function prototype

#include <iostream>
#include <cmath>
using namespace std;

const float PI = 3.14159;

int main()
{

float r = 3;
cout << "radius = " << r << ", volume = " << sphereVolume(r);

return 0;
}

double sphereVolume(double radius)
{

return PI * pow(radius, 3) * 4.0/3;
}

Error: C3861 'sphereVolume': identifier not found

The compiler processes the file one line at a time
starting from the top, so when it reaches
sphereVolume it does not recognize the name

#include <iostream>
#include <cmath>
using namespace std;

const float PI = 3.14159;
// Function Prototypes
double sphereVolume(double radius);

int main()
{

float r = 3;
cout << "radius = " << r << ", volume = " << sphereVolume(r);

return 0;
}

double sphereVolume(double radius)
{

return PI * pow(radius, 3) * 4.0/3;
}

fix by inserting a function prototype before main
(or by moving the function definition)

it is usually preferable to use function prototypes
rather than defining all your functions above main

parameter

argument

 The compiler compiles a program one line at
a time

▪ Starting at the top of the file

▪ If the compiler encounters an undefined identifier
it will be unable to continue

 Functions can be declared before being used
and defined later on in the file

▪ A function prototype consists of the function
header (followed by a semi-colon)

 Many functions require data to perform
operations on (i.e. input)

 Such data can be given to functions in a
number of ways

▪ The function can obtain the data itself

▪ By getting input from the user

▪ Data can be provided via global variables

▪ Which are visible throughout the file

▪ Values can be passed to parameters

 A global variable is a variable that is declared
outside any function

▪ Including the main function

▪ Variables declared inside a function are referred
to as local variables

 Global variables can be used by any function

▪ In the same file (and possibly other files)

▪ Avoid global variables

▪ With a few exceptions, such as constants

 They make programs harder to understand

▪ Functions that rely on global variables cannot be
considered in isolation

 They make programs harder to modify

▪ It is relatively straightforward to change a
function that is self-contained

 They make programs less portable

▪ If functions depend on global variables they
cannot easily be used by other files

 Parameter lists are the preferred method of
data input to a function

 Parameters are special variables that can be
passed values from calling code

▪ A function's parameters are given the value of
variables passed to a function

▪ Variables passed to functions are called arguments

void printIntDivision(int dividend, int divisor)
{

int quotient = dividend / divisor;
int remainder = dividend % divisor;
cout << dividend << "/" << divisor << " = " <<

quotient << " remainder" << remainder);
}

// ... main function
cin >> x;
// ...
cin >> y;
//...
printIntDivision(x, y); //prints result of x/y

formal parameters

arguments

 Parameters and arguments are different variables

▪ They refer to different main memory locations

▪ Parameters are given the values of arguments

▪ They may even have the same name but still refer to

different variables

 It is also possible to pass a function the address of a

variable

▪ Using pass by reference

▪ Or pointers

 Many functions return values

▪ The function performs a calculation

▪ And sends the result back to calling code

▪ e.g. sqrt, pow

▪ Values are returned by a return statement

 The type of the value in a return statement
must match the return type of the function

// Function to return a letter grade
char letterGrade(int grade){

if (grade > 89)
return 'A';

if (grade > 74)
return 'B';

if (grade > 59)
return 'C';

if (grade > 49)
return 'D';

else //(grade < 50)
return 'F';

}

As soon as any return statement is reached
the function execution ends and the value is
returned to the calling code

 Whenever we want to perform an action or a
calculation we should write a function

▪ Functions organize other programming constructs

▪ Functions often need input (arguments) and often
return values

 The return type of a function specifies the
type of information that it returns

▪ Note that a function with a return type of void
returns nothing

 A function that specifies a return type must
contain a return statement

▪ Or an error results

 The compiler may not check that all paths
within a function contain a return value

▪ Such as nested if statements, or

▪ If, else if, ..., else statements

▪ Some compilers may give warnings about this,
but others may not

 Is it possible to return from a function that
does not return a value (i.e. is void)?

▪ Yes!

▪ Just use return with no value

 This allows us to return from any function
before reaching the end of the function

▪ For example, in a branch of an if statement

 Functions should perform one task

▪ In particular, functions that calculate values
should not be responsible for output

▪ Such values should be returned not printed

 Functions should be self contained

▪ Input should be passed via parameters

▪ Results should be returned using a return
statement

 Recall that two variables cannot have the
same name

▪ More accurately, two variables can have the same
name as long as they have different scope

 The scope of a variable is the block in which it
is declared

▪ So variables with different scope may have
different names

void f(){
int x = 99;
cout << x << endl;

}

int main()
{

int x = 1;
if (x == 1){

int x = 2;
cout << x << endl;

}
cout << x;
f();
cout << endl << endl;
return 0;

}

if x scope

main x scope

f x scope

 The scope of any variable declared inside a
function is local to that function

▪ This includes a function's parameters

▪ So a parameter of a function may not have the same
name as a variable declared inside that function

▪ Unless the variable has a more limited scope

 Functions cannot be defined inside functions

▪ The scope of two different functions therefore
does not overlap

 The example shown previously had two
variables called x in the main function

▪ One variable declared in if (if-x) and one declared
in main (main-x)

▪ The scope of main-x encompassed the entire main
function and overlapped with if-x

 In such cases only the variable with the least
scope is visible

 Let's expand our memory model to cover
functions

▪ Which includes the main function

 It's not going to be very different from our
original model

▪ Main memory is a long sequence of binary digits

▪ Variables are allocated in sequence

▪ A system table allows us to find variables

▪ But we are not going to go into much detail about it

name num1 den1

data 48 140

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

This program fragment simplifies two fractions

int num1 = 48;
int den1 = 140; In this simple memory model of the call stack

memory is allocated to variables in sequence – in
this example starting with byte 192

The call stack is the area of main memory used for
function calls, also referred to as automatic memory

next free byte

name num1 den1

data 48 140

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 a b

data 48 140 48 140

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

This program fragment simplifies two fractions

int num1 = 48;
int den1 = 140;
int div = gcd(num1, den1);

int gcd(int a, int b)
{

while (a != b)
{

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}
return a;

}
next free byte

name num1 den1 a b

data 48 140 48 140

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 a b

data 48 140 48 92

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 a b

data 48 140 48 44

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 a b

data 48 140 4 44

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 a b

data 48 140 4 4

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

This program fragment simplifies two fractions

int num1 = 48;
int den1 = 140;
int div = gcd(num1, den1);

int gcd(int a, int b)
{

while (a != b)
{

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}
return a;

}
next free byte

name num1 den1 a b

data 48 140 4 4

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1

data 48 140

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

This program fragment simplifies two fractions

int num1 = 48;
int den1 = 140;
int div = gcd(num1, den1);

int gcd(int a, int b)
{

while (a != b)
{

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}
return a;

}
next free byte

return from gcd

name num1 den1

data 48 140

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 div

data 48 140 4

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

This program fragment simplifies two fractions

int num1 = 48;
int den1 = 140;
int div = gcd(num1, den1);

int gcd(int a, int b)
{

while (a != b)
{

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}
return a;

}
next free byte

and assign memory to div

name num1 den1 div

data 48 140 4

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 div

data 12 140 4

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 div

data 12 35 4

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

This program fragment simplifies two fractions

int num1 = 48;
int den1 = 140;
int div = gcd(num1, den1);
num1 = num1/div;
den1 = den1/div;

int gcd(int a, int b)
{

while (a != b)
{

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}
return a;

}
next free byte

name num1 den1 div

data 12 35 4

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 div num2

data 12 35 4 11

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 div num2 den2

data 12 35 4 11 288

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

This program fragment simplifies two fractions

int num1 = 48;
int den1 = 140;
int div = gcd(num1, den1);
num1 = num1/div;
den1 = den1/div;
int num2 = 11;
int den2 = 288;

int gcd(int a, int b)
{

while (a != b)
{

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}
return a;

}
next free byte

name num1 den1 div num2 den2

data 12 35 4 11 288

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

name num1 den1 div num2 den2 a b

data 12 35 4 11 288 11 288

address 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 …

This program fragment simplifies two fractions

int num1 = 48;
int den1 = 140;
int div = gcd(num1, den1);
num1 = num1/div;
den1 = den1/div;
int num2 = 11;
int den2 = 288;
div = gcd(num2, den2);

int gcd(int a, int b)
{

while (a != b)
{

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}
return a;

}
next free byte

 The area of main memory used for function
calls is called the call stack

 A stack is a simple data structure where items
are inserted and removed at the same end

▪ Usually referred to as the top of the stack

▪ A stack is a LIFO (Last In First Out) structure

 The call stack behaves like a stack

▪ Since the last function to be called

▪ Is the first function to be removed (de-allocated)

 The process for allocating main memory on
the stack is simple

▪ Always allocate memory in sequence

 A few things have to be recorded

▪ The address of the next free byte

▪ The starting address for each function’s memory

▪ The line number of each function call in the calling
function

 The process for allocating main memory on
the stack is simple

▪ Always allocate memory in sequence

 A few things have to be recorded

▪ The address of the next free byte

▪ The starting address for each function’s memory

▪ The line number of each function call in their
calling functions

▪ So the program can continue where it left off

 Fast

▪ The OS does not have to search for free space as
variable is inserted at the next byte

▪ Variables are found at the byte address given in the
symbol table

 Releases memory automatically

▪ When a function terminates its memory can be reused
by resetting the next free byte

 Space efficient

▪ There is very little administrative overhead

 Variable size cannot change

▪ The value of variables can change but more space
cannot be allocated to an existing variable

▪ Since it would overwrite the next variable on the stack

▪ It might be useful to change the size of array variables

▪ That store multiple values

 Memory is only released when a function ends

▪ Variables declared at the start of a function call may
not be needed for the lifetime of the function

 We have used pass-by-value to give
information to functions

▪ The data passed to a function is copied into the
function’s parameters

 This requires time to make a copy of the
passed value

▪ Trivial if we are passing an integer

▪ Less trivial if we are passing a 100MB image

 Let's say we want to write a function to swap
the values in two variables

 Here is a first attempt

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

Does this work?

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code (in main)
int a = 23;
int b = 37;
swap(a, b);

23

a

37

b

x and y are parameters of the swap
function so have their own space in
main memory

23

x

37

y

23 372337

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code (in main)
int a = 23;
int b = 37;
swap(a, b);

23

tempx y

23

a

37

b

swap has completed its execution so
its memory is released

37

x

23

y

23

temp

note that neither a nor b's values
have changed, so the swap function
achieved nothing!

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code (in main)
int a = 23;
int b = 37;
swap(a, b);

23

a

37

b

 There is an alternative mechanism for passing
variables to a function

▪ That allows the argument variables to be affected

▪ The function's parameters refer directly to the
argument variables

 The function parameters are preceded by an
ampersand (&)

▪ Immediately after the type name

void swap(int& x, int& y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code
int a = 23;
int b = 37;
swap(a, b);

the parameters x and y refer to a and b,
rather than storing their values

x y

23

a

37

b

23

temp

void swap(int& x, int& y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code
int a = 23;
int b = 37;
swap(a, b);

x y

23

a

37

b

37 23

2337

swap has completed its execution so its
memory is released

because swap's parameters are passed
by reference a and b have changed

void swap(int& x, int& y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code
int a = 23;
int b = 37;
swap(a, b);

23

tempx ya b

 The & is used to mean a number of different
things, dependent on the context

▪ Bitwise and

▪ Which we probably won't talk about …

▪ Pass by reference

▪ Return by reference

▪ Which we also probably won't talk about …

▪ The address of operator

▪ Which we will talk about later

 A function may have both pass by reference

and pass by value parameters

▪ The pass by value parameters are not preceded by

an ampersand

 Pass by reference parameters must be used

when arguments are intended to be changed

▪ They are also commonly used when a large object

is passed to a function

Function Overloading and Namespaces

 Like variables, function names must be unique

▪ But we can imagine that the full name of a function

includes the types of its parameters

▪ So the swap function is called swap-int-int

 Two functions may be given the same name if

they have differently typed parameter lists

▪ Or different numbers of parameters

▪ This is referred to as function overloading

 We can look up the sqrt function

▪ On http://www.cplusplus.com/

 There are three different versions of sqrt

▪ double sqrt (double x);

▪ float sqrt (float x);

▪ long double sqrt (long double x)

▪ Allowing the square roots of these different types

to be calculated without losing precision

http://www.cplusplus.com/

 For convenience our programs often start with

▪ #include <iostream>

▪ using namespace std;

 The first line includes the iostream library so that

we can use cin and cout

▪ The second line allows us to use cin and cout without

preceding them with std::

▪ A namespace contains a list of function and constant

names

 Namespaces are a mechanism to handle

multiple functions with the same name

 There are a number of standard libraries

▪ That contain functions with names that are

unique to that library

▪ However is it quite possible for other libraries to

contain functions with the same names

▪ Namespaces are a means of coping with this

 The using keyword allows functions to be used

without their namespace name

▪ e.g. using namespace std;

▪ Otherwise the function has to be used with its fully

qualified name, that includes its namespace

▪ e.g. std::cout << "…";

 using declarations can be made inside individual

functions

▪ So that they only apply within the body of that function

