
Decisions and Loops

 Branching

▪ Boolean logic

▪ If statements

▪ Switch statements

▪ The evil goto statement

 Repetition

▪ Conditional loops

▪ while

▪ do while

▪ Counting loops

▪ for loops

 Branching allows a program to make
decisions based on some condition

▪ If its raining, carry an umbrella

▪ If height is greater than 6' do not permit entry

▪ If x < 0 print an error message

 Conditions are written as Boolean expressions

▪ That evaluate to true or false

 An if-else statement chooses between two
alternatives

▪ Based on the value of a condition

▪ If the condition is true the statement(s) following
the if keyword are executed

▪ Otherwise the statement(s) following the else
keyword are executed

▪ An else statement is not required

if (range > 100){
direction = evade();

}
else {

speed = accelerate();
}

Let’s assume that a program is controlling a missile, if the missile far away from the
target it will attempt to evade any countermeasures, otherwise it will accelerate

We are assuming the range, direction and speed variables have been declared, and that
the accelerate and evade functions have been defined

if (range > 100)
direction = evade();

else
speed = accelerate();

If the body of the if statement (the code that executes based on the condition) is only
one line long then it does not need to be enclosed in {}s

This is OK but, be careful if you modify your code at a later date

if (range > 100)
direction = evade();

else
speed = accelerate();
explode();

Consider another version of the previous example

The indentation here is misleading, in fact the missile will explode regardless of its
range to the target. As there are no {}s the bodies of the if and else statements only
consist of the one line immediately following the condition

This time, when the missile is close to the target it should accelerate and then explode,
using a modified version of the previous example

oops!

 Conditions in if statements should be Boolean
expressions

 Usually two operands compared using a
comparison operator

▪ One of ==, !=, <, >, <= , >=

▪ Operators with two symbols (e.g. ==, <=) should
not have spaces between the symbols

▪ Make sure that you use == and not = as the test
for equality

 Born Nov. 2, 1815
▪ Lincoln, England

 Died Dec. 8, 1864
▪ Ballintemple, Ireland

 Philosopher and
mathematician

 Boole approached logic
by reducing it to algebra

 http://en.wikipedia.org/wiki/George_Boole

http://en.wikipedia.org/wiki/George_Boole

Operator Meaning Example Result

> greater than 4 > 4 False

< less than 'a' < 'p' True

>= greater than or equal to 4 >= 4 True

<= less than or equal to 2.3 <= 2.2 False

== equal to 4/3 == 1 True

!= not equal to 4.0/3 != 1 True

 There are two Boolean values

▪ true and

▪ false

 In C++, the bool type can be used to store
Boolean values

▪ bool completed = false;

▪ Boolean values are often used to control program
flow

▪ cout prints bool values as 1 (true) or 0 (false)

 Integers are converted into bool values
without generating compiler errors

▪ Usually generating a compiler warning

▪ This is dependent on compiler settings

▪ Converting one type to another is referred to as
casting

 Non-zero integer values are converted to true
and zero to false

 True is converted to 1 and false to 0

 A Boolean expression is an expression that
evaluates to true or false

 Therefore a condition in an if statement may
consist of a single Boolean value

▪ Or a function call that returns a bool variable

▪ e.g. if(completed) { …}

▪ Where completed is a Boolean value, that is
presumably used to indicate is some process is finished

 Multiple comparisons can be combined

▪ Using logical operators

 These operators allow us to express decisions
with more than one condition

▪ AND, && in C++

▪ True only if both comparisons are true

▪ OR, || in C++

▪ True if either comparison is true

▪ NOT, ! in C++, negates a Boolean expression

 12 < 13

▪ true

 21 == 17

▪ false

 23 != 21

▪ true

 9 >= 8

▪ true

 21 = 17

▪ true

▪ 12 < 13 && 7 > 7

▪ false

▪ 12 < 13 || 7 > 7

▪ true

▪ !21 > 13 && 7 >= 7

▪ false
▪ ! has precedence over >

▪ true || true && false

▪ true
▪ && has precedence over ||

 Boolean expressions can be evaluated in truth tables
 The symbol represents and
 The symbol represents or
 The symbol represents not (has precedence over and)

p q pq pq p pq pq

T T T T F F T

T F F T F F F

F T F T T T T

F F F F T F T

e.g. !(12 < 13) && 7 > 7

p q

Operator (from high to low) Associativity

[], (function), post++, post--, ., -> left to right

++pre, --pre, !, * (dereference), &, unary - + right to left

*, /, % left to right

+, - left to right

<<, >> left to right

<, >, <=, >= left to right

==, != left to right

&& left to right

|| left to right

? : (conditional operator) right to left

=, +=, -=, *=, /=, %= right to left

, (comma operator) left to right

 Brackets can be used to give operations
precedence

 Binary operators with the same precedence
are mostly evaluated left to right

▪ Unary operators and assignments with the same
precedence are evaluated right to left

 Note that x++ is evaluated before many other
operations

▪ But its primary (increment) effects occur later

if (++x > y || x > z && x > 13){
cout << "Hippopotamus!";

}
else {

cout << "Aardvark!";
}

If x = 9, y = 9, and z = 3 what does this print?

Prints Hippopotamus! because the ++ has precedence over everything (making
x equal to 10) and && has precedence over ||

truetrue false

false

 There are two very simple ways to avoid
mistakes relating to precedence

▪ Use brackets to avoid ambiguity

▪ Change complex statements into multiple simpler
statements

 And one more piece of advice, be careful
about type conversions

// Set adult to true age is 19 to 60
int age = 12;
bool adult;
if (18 < age < 61){

adult = true;
}
else {

adult = false;
}

This logical (not C++) statement: 0 < x < 100 is true if x is between 0 and 100. There is
no shorthand equivalent in C++, unfortunately such an expression is legal ...

This always prints true!

Think of the condition as ((18 < age) < 61)

If age is 12 then (18 < age) is false, so now evaluate: false < 61

false is cast to the an int value of 0, and when we evaluate 0 < 61 we get true

Except that it doesn't work
correctly!

oops!

 Where two expressions are joined by && or ||
C++ performs short circuit evaluation

▪ It may be possible to determine the result of the
entire expression from the first expression

▪ If so, the second expression is not evaluated

▪ e.g. (age > 19 && age < 61)

▪ If age is 17 there is no point in checking to see if age is <
61 as the entire expression must be false

int password;
cout << "Enter your password Mr. Trump: ");
cin >> password;
if(password = 1121865){

cout << "You may now commence nuclear war" << endl;
}else{

cout << "INTRUDER ALERT!";
}

One of the philosophies underlying C++ is that it will not perform checks to see if what
you are doing is sensible (because such checks reduce efficiency)

Here password is assigned the value of 1121865, and then the condition is evaluated

It uses the value of password (now 1121865), which evaluates to true!

should be ==

Enter your password Mr. Trump: 91
You may now commence nuclear war

output:

 An if-else statement chooses between just
two alternatives

▪ It is often useful to allow more than two
alternatives

▪ This can be achieved in a number of ways

▪ Multiple if-else statements

▪ Nested if-else statements

▪ If - else if – else statement

▪ Switch statements

 Write a function to print the letter grade of a
student given the numeric grade

▪ Following this grade scheme*

▪ 0 – 49 fail

▪ 50 – 59 D

▪ 60 – 74 C

▪ 75 – 89 B

▪ 90+ A
 *Not the grade scheme used in this class

 We could have just written code to print letter
grades from numeric grades

▪ Instead we will write a function that returns a
letter grade

▪ For a quick introduction to functions

▪ Which we will see a lot more of later

 A function is a separate block of code

▪ That can be used in the main function

▪ Or other functions

char letterGrade(int grade){
//function body

}

Return type – the function must have a return
statement that returns a value of this type

Function name

Function parameter list – input to
the function

The function might be called (used) like this to print a letter grade:

cout << letterGrade(87);

// Function to return a letter grade
char letterGrade(int grade){

if (grade > 50)
return 'D';

if (grade > 59)
return 'C';

if (grade > 74)
return 'B';

if (grade > 89)
return 'A';

else //(grade < 50)
return 'F';

}

It usually returns the wrong grade

A function terminates as soon as a
return statement is reached

Consider a grade of 81

The function contains 4 separate if
statements, one with an else clause

81 is over 50 the first if statement’s
condition is true so D is returrned

// Function to return a letter grade
char letterGrade(int grade){

char letterGrade = 'F';
if (grade > 50)

letterGrade = 'D';
if (grade > 59)

letterGrade = 'C';
if (grade > 74)

letterGrade = 'B';
if (grade > 89)

letterGrade = 'A';
return letterGrade;

}

It returns the correct grade

The function contains 4 separate if
statements, none with an else clause

It makes 4 comparisons before returning
the letter grade

lg = 'F' gr > 50

true

lg = 'D'

false

char letterGrade(int grade){
char letterGrade = 'F';

if (grade > 50)
letterGrade = 'D';

if (grade > 59)
letterGrade = 'C';

if (grade > 74)
letterGrade = 'B';

if (grade > 89)
letterGrade = 'A';

return letterGrade;
}

gr > 59

true

lg = 'C'

false
gr > 74

true

lg = 'B'

false
gr > 89

true

lg = 'A'

false
return

lg

// Function to return a letter grade
char letterGrade(int grade){

char letterGrade = 'F';
if (grade > 50){

letterGrade = 'D';
if (grade > 59){

letterGrade = 'C';
if (grade > 74){

letterGrade = 'B';
if (grade > 89){

letterGrade = 'A';
} } } }
return letterGrade;

}

If grade is 45 only one comparison
would be made

This version is similar to the previous
one except that the if statements are
nested within each other

lg = 'F' gr > 50 lg = 'D'
true

char letterGrade(int grade){
char letterGrade = 'F';
if (grade > 50){

letterGrade = 'D';
if (grade > 59){

letterGrade = 'C';
if (grade > 74){

letterGrade = 'B';
if (grade > 89){

letterGrade = 'A';
} } } }
return letterGrade;

}

gr > 59 lg = 'C

return
lg

gr > 74 lg = 'B'
true

gr > 89 lg = 'A'
true

true

false

false

false

false

// Function to return a letter grade
char letterGrade(int grade){

char letterGrade;
if (grade > 50)

letterGrade = 'D';
else if (grade > 59)

letterGrade = 'C';
else if (grade > 74)

letterGrade = 'B';
else if (grade > 89)

letterGrade = 'A';
else // (grade < 50)

letterGrade = 'F';
return letterGrade;

}

So this only ever returns D or F!

In an if – else if – else statement only the
body of the first true condition is evaluated

Let's do what we could have done a while
ago, reorder the statements

// Function to return a letter grade
char letterGrade(int grade){

char letterGrade;
if (grade > 89)

letterGrade = 'A';
else if (grade > 74)

letterGrade = 'B';
else if (grade > 59)

letterGrade = 'C';
else if (grade > 50)

letterGrade = 'D';
else // (grade < 50)

letterGrade = 'F';
return letterGrade;

}

This works correctly, the same plan could
have been used to fix the first version

The function checks for an A, then for a
B, then for a C, then for a D, if none of
those apply the grade must be an F (else)

lg = 'F'gr > 89

true

lg = 'A'

false

char letterGrade(int grade){
char letterGrade;

if (grade > 89)
letterGrade = 'A';

else if (grade > 74)
letterGrade = 'B';

else if (grade > 59)
letterGrade = 'C';

else if (grade > 50)
letterGrade = 'D';

else // (grade < 50)
letterGrade = 'F';

return letterGrade;
}

gr > 74

true

lg = 'B'

false
gr > 59

true

lg = 'C'

false
gr > 50

true

lg = 'D'

false

return
lg

 An if statement does not have to have an
associated else statement

▪ An else statement does need an associated if
statement

 Else statements are always matched to the
closest if (or else if) statement

▪ Regardless of indentation

▪ Control with {}s if necessary

 C++ has a shorthand for an if else statement

▪ The conditional operator

 The operator is a two part operator with three
operands

▪ A ternary operator

 The operator consists of the following

▪ A Boolean expression followed by a ?

▪ A value

▪ A colon (:) followed by a value

store the absolute value of x in y

if (y < 0)
x = -y;

else
x = y;

the equivalent conditional expression x = (y < 0) ? -y : y;

condition value if falsevalue if true

 Switch statements can be used to choose
between different cases

▪ As long as the cases can be evaluated to an
integer or a character

 As another, grade-related, example let's write
a function to print a message

▪ That varies based on the grade

// Switch statement to print a letter grade message
char letterGrade = 'B';
switch (letterGrade)
{
case 'A':

cout << "Wow, an A, congratulations!" << endl;
case 'B':

cout << "Well done, you got a B" << endl;
case 'C':

cout << "You passed, with a C" << endl;
case 'D':

cout << "It was close but you passed, a D" << endl;
case 'F':

cout << "Too bad, so sad, you failed" << endl;
default:

cout << "Error!\n" << endl;
}

The statement after the first matching case is
executed, then all of the following statements

Well done, you got a B
You passed, with a C
It was close but you passed, a D
Too bad, so sad, you failed
Error!

output

// Switch statement to print a letter grade message
char letterGrade = 'B';
switch (letterGrade)
{
case 'A':

cout << "Wow, an A, congratulations!" << endl;
break;

case 'B':
cout << "Well done, you got a B" << endl;
break;

case 'C':
cout << "You passed, with a C" << endl;
break;

case 'D':
cout << "It was close but you passed, a D" << endl;
break;

case 'F':
cout << "Too bad, so sad, you failed" << endl;
break;

default:
cout << "Error!\n" << endl;

}

The break statement immediately moves to the
end of the switch statement body (the closing })

But, this won’t work if we set letterGrade to ‘b’

// Switch statement to print a letter grade message
char letterGrade = ‘b';
switch (letterGrade)
{
case 'A': case 'a':

cout << "Wow, an A, congratulations!" << endl;
break;

case 'B': case 'b':
cout << "Well done, you got a B" << endl;
break;

case 'C': case 'c':
cout << "You passed, with a C" << endl;
break;

case 'D': case 'd':
cout << "It was close but you passed, a D" << endl;
break;

case 'F': case 'f':
cout << "Too bad, so sad, you failed" << endl;
break;

default:
cout << "Error!\n" << endl;

}

 The switch test expression and the case labels
must be integer values

▪ Which includes the char type

 Therefore switch statements cannot be used
in the following situations

▪ To evaluate floats, or other non integer types

▪ To evaluate ranges of values

▪ At least without creating many cases

 C++ has a goto statement

▪ That directs execution to a labelled statement in
the same function

 Avoid the use of goto statements

▪ They are unnecessary and their effect can be
achieved by the use of other constructs

▪ Goto statements make programs very difficult to
read, and therefore hard to modify

 Loops allow statements to be repeated

▪ The code to be repeated is in the loop body

▪ One repetition of the body is called an iteration

 Loops are structurally similar to if statements

▪ The loop control statement(s) are contained in
()s after the keyword

▪ The loop body is contained in {}s

 A while loop consists of the keyword while,
a condition and a loop body

▪ The condition is a Boolean expression

▪ Just like an if statement condition

▪ The loop iterates until the condition is no longer
true (while it is true)

 The loop body should include code that
eventually makes the condition false

▪ Or the loop will iterate for ever (an infinite loop)

 Computing a factorial is a repetitive process

▪ 5! = 1*2*3*4*5 = 120

▪ Set result = 1, i =2

▪ Multiply result by i

▪ Add one to i

▪ Repeat until i > 5

 We will go through some alternative versions of
a function to compute factorials

▪ Writing a function creates a self contained construct
that could be used in a program

// PRE: x must be a +ve integer
// Function that returns the factorial of x
long long fact(int x){

long long result = 1;
int i = 2; //loop control variable
while (i <= x){

result = result * i;
++i;

}
return result ;

}

Write a function that returns the factorial of the integer parameter:
e.g. fact(5) = 5! = 5 * 4* 3 * 2 * 1 = 120

i must be incremented in the loop

The function does not handle –ve numbers

Note the indentation of the statements in
the function and the loop

don't put a ; here – it makes an empty loop
a large
integer

condition

... program ...

Loop body

true

Rest of program

false

 while statements
contain a condition

▪ If the condition is true
the body is executed

▪ Then the condition is
tested again

▪ If the condition is
false the program
continues from the
end of the loop body

 A while loop has an entry condition

▪ If the condition is initially false the loop body will
not be processed at all

 Sometimes the first iteration should occur
outside of and before the loop

▪ So that the variable being evaluated in the
condition can be initialized appropriately

// Function that returns the sum of values
// entered by the user
int sum(){

int result = 0;
int next;
cout << "Enter a number, 0 to end");
cin >> next;
while (next != 0){

result += next;
cout << "Enter a number, 0 to end";
cin >> next;

}
return result ;

}

Write a function that sums numbers until the user enters 0

Because next controls the loop it needs
a value before the loop starts

Although there are some alternatives:

Initialize next to non-zero and then get
input before adding to result, or

Use a do ... while loop

 A do ... while loop's condition comes after the
loop body

▪ The loop body will iterate at least once

▪ Whereas a while loop will not iterate at all if the
condition is initially false

 Any do ... while loop can be replaced by while

▪ Possibly needing some extra statements before the
loop statement

▪ Some people prefer while loops because the condition
comes first

// PRE: x must be a +ve integer
// Function that returns the factorial of x
long long fact2(int x){

long long result = 1;
int i = 1; //loop control variable
do {

result = result * i;
++i;

} while (i <= x);
return result ;

}

note the ; after the condition

Write a function that returns the factorial of the integer parameter:
e.g. fact(5) = 5! = 5 * 4* 3 * 2 * 1 = 120

 Loop bodies are often repeated a certain
number of times

▪ Rather than ending at an indeterminate time

▪ e.g. factorial function, processing the values in a list

 For loops can be used to iterate a given
number of times

▪ By incrementing an integer variable

▪ And ending when the variable reaches a value

▪ For loops can do anything that while loops can

// PRE: x must be a +ve integer
// Function that returns the factorial of x
long long fact3(int x){

long long result = 1;
for (int i = 2; i <= x; ++i){

result = result * i;
}
return result ;

}

The loop control statement consists of
three statements

Write a function that returns the factorial of the integer parameter:
e.g. fact(5) = 5! = 5 * 4* 3 * 2 * 1 = 120

initialization condition increment

In this example the loop control
variable is also declared in the
initialization statement

condition

Initialization

Increment

true

Loop Body

Rest of
Program

false

 for statements consist of
three expressions

▪ Separated by ;s

 Initialization

▪ Executed only once

 Condition

▪ Tested before each iteration

▪ The last time the condition is
tested there is no iteration

▪ Since the test returns false

 Increment

▪ Applied after each iteration

 It is usual to use for loops as counting loops

▪ Initialize the loop control variable

▪ Test to see if the end of the count is reached

▪ Increment the count (the loop control variable)

 The for loop structure is much more general

▪ An expression evaluated once at the beginning

▪ A condition that is evaluated before each iteration

▪ The body is only executed if the condition is true

▪ An expression evaluated once after each iteration

 The comma operator evaluates a list of expressions

returning the last expression

▪ e.g. z = (x = 1, y = x + 1);

▪ x = 1 is evaluated first (assigning 1 to x)

▪ y = x + 1 is then evaluated (assigning 2 to y)

▪ The comma expression returns the value of y

▪ So z is also assigned 2

 It is most commonly used in for loops

▪ To allow multiple initialization or increment statements

 The break and continue statements can be used to
change flow of control

 The break statement terminates the processing of a loop
or switch statement

▪ It ends evaluation of its enclosing body

▪ And switches control to the next statement after the closing }

 The continue statement terminates the processing of the
current loop iteration

▪ And then continues with the loop, first testing its condition

▪ Like goto, continue and break can make programs harder to
understand

 There are two version of the increment operator
 Pre: ++x

▪ The variable is incremented and then the rest of the
statement is executed

 Post: x++

▪ The variable is incremented only after the rest of the
statement has been executed

 If the statement consists only of the increment
operator there is no difference between the two

 All of this applies to the decrement operator

 Like if statements, loops can be nested

▪ One loop can contain another loop

 The use of functions can make nested loops
easier to understand

▪ Particularly if one of the nested loops is placed
inside a function

 Nested loops may cause a program to run
slowly

▪ But may also be unavoidable

 There is a large element of choice

▪ What you can do with one loop, you can do with
another

 For loops are a natural choice for counting
with an index

 While loops are a natural choice for indefinite
iteration

▪ Such as when the loop ends based on user input

 There is another version of the for loop

▪ That iterates over the values in a container

▪ This will be introduced when we discuss arrays

 We will also cover more complex examples of
loops

▪ Including some nested loops

▪ Again, when we discuss arrays

