
First Program

 Compilation and Execution

 Simplifying Fractions

▪ Loops

▪ If Statements

 Variables

 Operations

 Using Functions

 Errors

 C++ programs consist of a series of
instructions using the C++ syntax

▪ Usually broken down into a number of functions

▪ And often in different files

 A C++ program needs to be translated into
something that a computer can understand

▪ This process is called compiling

▪ A compiler translates high-level language code
into machine code

Source File
(.cpp)

write in a text
editor

correct errors

compile
Object File

(binary)

Other
Object Files

Executable
File

test

linker links
files

Debugged
Executable

preprocessor
handles

directives

 Most OSs include C++ compilers and allow a
program to be compiled and run

 To compile and run a program in Linux follow
these steps

▪ Write the program using a text editor

▪ Compile the program using the g++ compiler

▪ Run the program created by compilation by
typing its name

 Assume there is a C++ file named test.cpp
 Open a Terminal window in Linux
 At the command prompt type

▪ g++ –o test test.cpp

▪ The –o switch (or flag) tells the compiler to name the
object file that is being created test

▪ test.cpp is the name of the file to be compiled

 To run the newly created file type

▪ ./test

 In reality if we’ve just finished writing our first
C++ file it will fail to compile

▪ Because it contains compilation errors

▪ That is, mistakes in C++ syntax

 The compiler will print a list of errors

▪ That we can then fix

 More on this later ...

 An alternative to using the Terminal to compile
programs is to use an IDE

▪ Integrated Development Environment

 An IDE combines a text editor, a compiler, a
debugger and (many) other tools

▪ There are many IDEs

▪ Visual Studio (Windows)

▪ Code::Blocks (cross-platform)

▪ Xcode (Mac OS)

▪ Eclipse

 Assume we want to simplify fractions
▪ 4/16 =
▪ 1/4

▪ 105/135 =
▪ 7/9

 To simplify a fraction
▪ Find the greatest common divisor (gcd) of the

numerator and denominator
▪ Using Euclid's algorithm

▪ Divide numerator and denominator by the gcd

 “We want to simplify fractions" is pretty vague
 Input

▪ Prompt the uset to enter two integers
▪ That represent a numerator and denominator

 Output

▪ Print the simplified result in the form
▪ numerator / denominator

 Process

▪ Calculate the gcd of the numerator and denominator

▪ Print numerator gcd, a "/", and denominator gcd

#include <iostream>

int main()
{

int numerator = 0;
int denominator = 1;

// Get user input
std::cout << "Enter the numerator: ";
std::cin >> numerator;
std::cout << "Enter the denominator: ";
std::cin >> denominator;

// Compute GCD of numerator and denominator using Euclid's algorithm
int a = numerator;
int b = denominator;
while (a != b) {

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}

// Print result
std::cout << std::endl << numerator/a << "/" << denominator/a << std::endl;
return 0;

}

 The program has a number of sections
 Introductory comments

▪ That describe the program
▪ Omitted from previous slide for space

 An include statement

▪ That imports library functions

 A main function

▪ That actually does the work

▪ The main function includes an implementation of Euclid's
algorithm (the while statement)

 Comments document programs
▪ They explain what a program does

▪ And how it works

▪ They are ignored by the compiler

▪ A comment starts with /* and ends with */
▪ And may include more than one line

 Writing comments is an important part of
writing a maintainable program
▪ And you will lose marks if you don’t write

comments in assignments ...

/*
Program to simplify a fraction
Author: John Edgar
Date: September 2018

*/

Omitted from the sample code for space

 There are two ways of writing comments

▪ Starting with /* and ending with */

▪ /* can also be used for comments that start on one line

▪ and end on another */

▪ Or single line comments that start with

▪ // and continue to the end of the line

 Either method of commenting is acceptable

▪ // style is particularly useful for short comments

 The include statement is a pre-processor
directive

▪ The pre-processor operates before the compiler

 #include tells the pre-processor to include
the contents of iostream in our program

▪ Opens the iostream file

▪ Copies its contents

▪ Pastes it, replacing the include directive

 The iostream file contains information that
our program need

▪ For this program it is access to cin and cout

▪ Which are used for standard input and output
▪ Usually input from the keyboard and output to the monitor

▪ iostream contains input and output functions

▪ Input and output streams

 Programs will often need to use functions
and classes from library files

 C++ programs have one main function that
executes when the program is run

▪ This function has to be called main

▪ We will write (lots of) other functions that we will
give different names to

 The main function always has the same
general form

int main()
{

// stuff you want to happen

// usually many other functions

return 0;

}

the return type of the function

the name of the function, main in this case

the function’s parameter list (empty)

opening and closing curly brackets

return statement, more on this later

semi-colon, you’ll see lots of these

 A program is a sequence of instructions executed in
order

▪ The order in which instructions are given is important
▪ And cannot be arbitrarily changed with the expectation that the

same results will occur

 When main executes it starts with the first line and
ends when it reaches the return statement

▪ Any instructions after the return statement will not be
executed

 Various control statements may change program flow
to allow loops or branching

 Semi-colons show the end of C++ instructions

▪ Most C++ statements are written on one line

▪ However, the newline character does not indicate
the end of a statement

 Don't forget semi-colons

▪ As the program won't compile without them

▪ Generally, you need a semi-colon after each
statement that does not start or end with { or }

 The simplify program uses four variables

▪ Variables are used to store data

▪ Variables can be initialized or changed using the
assignment operator, =

 The variables in simplify all have the same type

▪ The type specifies what kind of data is stored

▪ These variables are type int - used to store whole numbers

▪ A variable's type is specified when only it is declared

▪ Thereafter variables are referred to just by name without
noting the type

int numerator = 0;
int denominator = 1;

int a = numerator;
int b = denominator;

int a = 213;
declaration and initialization

list of integer variables, separated by
commas

int a, b;

type

identifiers (names)

or

Note that it is important to give variables meaningful names; I
used a and b because Euclid's algorithm finds the greatest
common denominator of two arbitrary integers

 Simplify includes operations on integer data

▪ Subtraction and division

▪ Assignment

 An operation requires an operator and at least
one operand

▪ a = a – b;

operator right operand?left operand

assignment is a binary operation since there are
two operands, one on the left and one on the right

the right operand is the result of a-b

note that this one statement contains two binary operations with a distinct order

 Loops are constructs that perform repetition

▪ That is they repeat code inside the body of the
loop until some condition is met

▪ If the condition cannot be met the loop will continue
running forever (an infinite loop)

 In the simplify program the loop continues to
run as long as a and b have different values

▪ The code that is repeated is contained within {}s
that come after the condition

while(a != b)
{

if(a > b){
a = a-b;

}else{
b = b-a;

}
}

keyword (while) and condition

the condition (a is not equal to b)
evaluates to true or false

the body of the loop is repeatedly
executed until the condition is false

the condition compares values
stored in the integer variables

while(condition)
{

//loop body
}

the condition is a comparison
that evaluates to true or false

conditions can be more complex
and may not involve comparisons

the loop body consists of the statements that are to be repeated

the condition is tested before each iteration of the loop

if the condition is false the program jumps to the statement after the loop
body's closing bracket

If the condition is true the statements in the body of the loop are executed

 If statements are constructs that allow decisions
to be made

▪ One set of statements is performed if the condition is
true

▪ Another set of statements is performed if the
condition is false

 Unlike loops, if statements do not perform
repetition

▪ One set of statements is performed and the program
continues from the end of the if statement

 Both while loops and if statements use
conditions

▪ A condition is a Boolean expression that evaluates
to true or false

 Boolean expressions compare two values
with a comparison operator

▪ One of <, <=, >, >=, == (equal to), != (not equal to)

▪ More complex conditions are possible and these
will be discussed later in the course

if(a > b)
{

a = a-b;
}else{

b = b-a;
}

keyword (if) and condition

the condition (a > b) is true if a is
greater than b and false otherwise

if statements are not required to
have an else clause

executed if a is greater than b

executed if a is not greater than b

keyword else, i.e. otherwise ...

 The last line of the program prints the result using
cout

▪ The << operator is used to output data of each type
▪ << is the insertion operator

▪ Text is written as a double-quoted string, e.g. "/"

▪ The std::endl constant prints a newline character

 A string is a sequence of characters

▪ Strings can be of any length

▪ And must be enclosed in ""s

std::cout << std::endl << numerator/a << "/" << denominator/a << std::endl;

 A text editor designed for use with C++
colours words to aid readers

▪ Different text editors use different colours

▪ The Linux text editor uses different colours from
those presented in this presentation

 It is common to colour the following

▪ Keywords (blue in presentation)

▪ Strings, i.e. words enclosed by ""s (red)

▪ Comments (green)

 Indentation is used to indicate flow of control

▪ Everything in the main function’s brackets is indented
underneath the word main

▪ The body of the while loop is farther indented under the
while statement

 Indentation helps the reader, not the compiler

▪ Even though indentation is ignored by the compiler it is
still very important

▪ Our goal is not just to produce programs that work but to
produce programs that are easy to maintain
▪ i.e. that are easy for people to understand

#include <iostream>

int main()
{

int numerator = 0;
int denominator = 1;

// Get user input
std::cout << "Enter the numerator: ";
std::cin >> numerator;
std::cout << "Enter the denominator: ";
std::cin >> denominator;

// Compute GCD of numerator and denominator using Euclid's algorithm
int a = numerator;
int b = denominator;
while (a != b) {

if (a > b) {
a = a - b;

}
else {

b = b - a;
}

}

// Print result
std::cout << std::endl << numerator/a << "/" << denominator/a << std::endl;
return 0;

}
indentation

keywords
strings

comments

#include <iostream>
int main(){int numerator = 0;int denominator = 1;std::cout << "Enter the numerator: ";std::cin >>
numerator;std::cout << "Enter the denominator: ";std::cin >> denominator; int a = numerator;int b
= denominator; while (a != b) {if (a > b) { a = a - b; }else { b = b - a; }}std::cout << std::endl
<< numerator / a << "/" << denominator / a << std::endl;return 0; }

And here is the same program with no comments, colours or sensible formatting

This program does compile and run correctly but is very difficult to read

Important note – if the above program was submitted as a solution to an
assignment it would lose a lot of marks, even though it works

There is a lot more to writing a good program than producing something that
works

 Let's critique the simplify program

▪ …

 Major criticisms

▪ Very limited application

▪ But beware bloat

▪ No GUI

▪ Bare bones input and output

▪ Lack of error handling

▪ GCD calculation should be a function

 A variable stores data required for a program

▪ It is a sequence of bytes

▪ The bit pattern stored in those bytes represents the
data to be stored

▪ Variables cannot be empty

 The data stored in a variable is referred to by the
name of the variable

▪ And can be operated on

▪ Modified or

▪ Replaced

int age;
...
age = 23;
...
age = age + 1;

declares a variable of type int

stores the value 23 in age

this compound statement actually
does three things:

retrieves the value stored in age (23)

calculates the sum of 23 and 1 (24)

stores 24 in age

type identifier (name)

 A variable is declared only once

▪ Variables must be declared before they are used

 Variables may be declared in a list

▪ Each variable is separated by a comma

 Variables may be assigned a value when
declared

▪ Known as initialization

int days = 213; declaration and initialization

list of integer variables, separated by commas

int hours, minutes, seconds;

 Declaring a variable reserves space for the
variable’s data in main memory

▪ A variable can only be declared once

▪ Repeating a declaration is an attempt to declare a
new variable with the same name

▪ Which is illegal

 Variables with the same name are allowed as
long as their scope is different

 Variables should be initialized before first
being used

▪ That is, given sensible starting values

▪ This can be done at the same time as they are
declared

 Forgetting to initialize variables can result in
unexpected and unwanted results

▪ Note that a memory location can never be empty

▪ Since it is a sequence of bits

 Variables in simplify were declared as type
int, and int is a reserved word or keyword

▪ Part of the C++ language

 There are other keywords, many of which we
will encounter in this course

▪ A text editor designed for writing C++ programs
will usually indicate keywords by colour

 Keywords cannot be used as variable names

▪ Fortunately …

 A token is the smallest unit of a program
 Tokens include

▪ Reserved words: parts of the C++ language

▪ Identifiers: names defined by the user

▪ Variables

▪ Functions

▪ Constants

▪ Structures

▪ Classes

 User created names must only contain

▪ Letters, both upper and lower case

▪ Digits (0 to 9)

▪ The underscore character (_)

 Identifiers must begin with a letter or _

▪ By convention variables usually start with a lower
case letter

 C++ is case sensitive

▪ age and aGe are different identifiers

 Identifiers should be descriptive to make
programs easier to understand

▪ Names should be a reasonable length, and

▪ Give information about the identifier's purpose

 Say we want to store a rectangle's height

▪ height, or rect_height, or rectHeight are fine

▪ ht, or, even worse, a, are not descriptive

▪ variableForTheHeightOfARectangle is too long

 cycle
▪ ✓

 A!star
▪ (!)

 int
▪ (reserved word)

 Score
▪ ✓ (though upper case not

recommended for a variable)

 xc-y
▪ (-)

 race#1
▪ (#)

 my_variable
▪ ✓ (but not descriptive)

 Int
▪ ✓ (but horrible – why?)

 cmpt130variable
▪ ✓ (but not descriptive)

 3rdVariable
▪ (starting 3)

 A variable declaration should begin with the
type of the variable

 A variable name should

▪ Be legal

▪ Only contain a-z, A-Z, 0-9 or _

▪ Not be a reserved word

▪ Start with a lower case letter

▪ Convey meaning

 A variable is a value stored in main memory

▪ Main memory = RAM = Random Access Memory

 Values are encoded in binary
 A variable is therefore a sequence of binary

digits (bits) of a particular length
 Variables have:

▪ A type – the kind of data the variable stores

▪ A value – the data stored in the variable

▪ An address – the location of the variable

 In the example program we saw two types of
operations

▪ Numeric operations

▪ Assignments

 Sometimes the meaning of an operator may
be dependent on the type of the operands

▪ e.g. division

 C++ uses normal arithmetic operators

▪ These can be used wherever it is legal to use a
value of the type produced by an expression

▪ The result of the operators varies somewhat
based on the type of the operands

 The +, -, and * operations perform addition,
subtraction, and multiplication

▪ The result of division is determined by type

 When both operands are integers the /
operator performs integer division

▪ The number of times the RHS goes into the LHS

▪ 11 / 3 is equal to 3

 The % (modulus) operator returns the
remainder in integer division

▪ 11 % 3 is equal to 2

 It is common to add one to (some) variables

▪ C++ provides the increment operator, ++

▪ count++; // adds one to count

▪ This is typically used with ints but can be used
with other numeric types

▪ There is also a decrement operator, --

 There are two ways to use increment

▪ prefix and postfix

▪ x++ may have a different result from ++x

 The increment operator can be used before
or after a variable

▪ Before is the prefix version: ++x

▪ After is the postfix version: x++

 The prefix ++ increments the variable before
other operations in the statement

 The postfix ++ increments the variable after
other operations in the statement

 The assignment operator, =, is used to assign
values to variables

▪ The value on the right side is stored in the variable
on the left side

▪ The bit representation of the left operand is copied to
the memory address of the right operand

 The type of the right operand must be
compatible with the left operand

▪ More on this later

 C++ has shorthand operators that combine
assignment and arithmetic

▪ count += 2; // count = count+2

▪ cost -= rebate; /* cost = cost–rebate */

▪ bonus *= 2; // bonus = bonus*2

▪ time /= speed; /* time = time/speed */

 These operators are just typing shorthand

▪ They still retrieve the value of the variable, perform
the operation and then store the result in it

 In a complex expression operations are
performed one at a time in order

▪ The order is determined by precedence rules

▪ Expressions in ()s are evaluated first

▪ Then function calls

▪ Then normal arithmetic precedence (*,/) then (+,-)

▪ Assignment is usually last

▪ More complete precedence rules will be provided
later in the course

 A constant is a special kind of variable

▪ Used to represent a value that does not change

▪ such as the value of pi

 Use constants to name values in a program
that won’t change

▪ To avoid magic numbers in a program

▪ Numbers whose origin is unclear

▪ This makes a program easier to understand and
easier to modify

 Constants are declared by preceding the
variable declaration with the keyword const

▪ The constant must be given a value, and cannot
be changed in the program

▪ By convention constants are written in capitals

 Assume that there are 10 branches in a
program to maintain bank information

▪ const int BRANCH_COUNT = 10;

 To use a function write the name of the
function followed by its arguments

▪ The arguments must be in parentheses

▪ If there are no arguments the function name must
be followed by empty parentheses

▪ The arguments must be of the appropriate type

 Some functions return values

▪ And are usually assigned to a variable

▪ Or used in a calculation

function names

function arguments

pow executes, and is
replaced by its return value

printf("hello world"); printf has no return value

answer = sqrt(7.9); the result of calling sqrt is
assigned to answer

area = PI * pow(radius, 2);

 Function calls in statements have precedence
over most other operations

▪ Such as arithmetic or comparisons

▪ A function is executed and its result returned
before other operations are performed

 The function call is replaced by its return
value

▪ Which may then be used in a calculation

 When a function is called program execution
switches to the function

▪ Each statement in the function is executed in turn
until

▪ The last line is reached, or

▪ A return statement is processed

 Execution then returns to the line of code
where the function was called from

▪ The function call is replaced by the return value

 It may be helpful to think of a function as a
black box

▪ That has inputs and produces output through
some process

input

output

 Consider this line of code:

▪ x = sqrt(y);

 What is necessary for this to work?

▪ x and y must be existing variables

▪ sqrt must be a valid function name

 But that's not all! The sqrt function must

▪ Return a value, that is compatible with x's type

▪ Require input of a type compatible with y's type

 Here is another example

▪ x = sqrt(y) + 4;

 There are a number of steps here

▪ The program switches execution to sqrt function

▪ Which computes the return value

▪ The return value replaces the function call

▪ 4 gets added to the result of calling sqrt

▪ And the result of the sum is assigned to x

 We will use many functions in this course

▪ Including ones we have written ourselves

 When using a function, it must be given the
appropriate arguments

▪ Arguments are information that the function
needs to perform its task

▪ They are given to (passed to) the function in the
brackets following the function’s name

 Most programs contain errors

▪ Most large working programs contain errors

 A substantial amount of time is spent finding
and fixing errors (known as debugging)

 We can categorize errors into three very
broad types

▪ Compilation and Linker errors

▪ Run-time errors

▪ Logic errors

 These errors prevent a program from being
compiled

 Compilers are very picky and complain at the
slightest mistake, some common errors are

▪ Misspelled words, C++ is case sensitive, so int is
different from Int

▪ Missing semi-colons, or brackets, or quotes

▪ Incorrect arguments for functions

 You will spend a lot of time looking for errors

 Once a program compiles and runs there is
still testing (and work) to do

 Run-time errors cause programs to crash

▪ As a result, for example, of input type errors

▪ These need to be predicted and handled in some way

 Logic errors cause programs to return
incorrect results

▪ And need to be caught by rigorous testing

