

 Administration
 Computers
 Software
 Algorithms
 Programming Languages

 http://www.cs.sfu.ca/CC/130/johnwill/
 This course does not use Canvas

John Edgar 3

http://www.cs.sfu.ca/CC/130/johnwill/

 Come to class
 Read ahead
 Attend the labs

▪ You get practice and can also ask for help

▪ You get marks

 Complete the assignments

▪ You get marks for them, and

▪ You learn to program by programming

 Ask questions

 Programming in C++
 Problem solving, fundamental algorithms
 Elementary data structures
 Representation of Data
 Software design
 Algorithms

John Edgar 5

 Assignments – 25%
 Labs – 5%
 Midterm exam in class – 20%
 Final exam – 50%

John Edgar 7

 Labs are every week

▪ Except for the first week

 Labs are usually assessed

▪ This will be shown on the lab page of the site

▪ Assessed labs are worth 0.5% of your final grade

 Labs are not exams – we want you to learn
how to program – so ask for help!

▪ And feel free to work with a friend

 There will be five programming assignments

▪ Each worth 5% of your final grade

 They must be submitted on the Computing
Science submission server

▪ Coursys

▪ They must be completed on your own unless
specified otherwise by the instructor (me)

https://coursys.sfu.ca/

 Read the policy
 Section 4.1.2 (e) forbids

▪ Cheating in assignments, projects, examinations or
other forms of evaluation by:

i. using, or attempting to use, another student’s answers;

ii. providing answers to other students;

iii. failing to take reasonable measures to protect answers
from use by other students; or

iv. in the case of students who study together, submitting
identical or virtually identical assignments for evaluation
unless permitted by the course Instructor or supervisor.

http://www.sfu.ca/policies/files/Students/S10.01.pdf

 It's cheating and therefore immoral …
 Because we may catch you and then

▪ You get zero on your assignment

▪ You will get a letter on your file

▪ And if you keep doing it

▪ You get chucked out of SFU

 You won't learn how to program

▪ Because you won't learn how to program you are
far more likely to fail the final exam

carrie

https://www.youtube.com/watch?v=WaSy8yy-mr8

And Computing Science

 Computers come in many shapes and sizes
▪ Desktops

▪ Laptops

▪ Phones

▪ Specialized systems
▪ Braking systems

▪ Toasters

▪ Autonomous vehicles

 It's probably more useful to look at some
characteristics of (modern) computers

 Can do basic arithmetic (+, -, *, /)

 Can perform these arithmetical operations very fast

 Represents data in binary
 Has a large main memory that can efficiently store

and retrieve data
 Can accept input and produce output
 Can be programmed

 Stores programs in main memory
One of the characteristics of the Von Neumann architecture

John Edgar 14

 This course doesn't encompass philosophy

▪ Do computers think, for example?

▪ Which leads to, what is thought?

 Computers are very good at doing things that
we find difficult to do

▪ At least with any reasonable speed

 But does that mean that computers are
generally “smarter” than people?

 Alienware Area 51

▪ Uses Intel Core i7

▪  300,000 MIPS

 Lots of memory!

▪ 32GB of RAM

▪ 4 TBs of storage

 And it looks cool

 Human brain

▪ Processing power
estimated at 100
million MIPS

▪ Memory estimated at
100,000 GB

 It is the study of algorithms and data
structures, including their

 formal and mathematical properties

 hardware realizations

 linguistic realizations

 applications

John Edgar 18

 It is the study of algorithms and data
structures, including their

 formal and mathematical properties

 What can be computed?

 What is the most efficient way to solve a particular
problem?

 hardware realizations

 linguistic realizations

 applications

John Edgar 19

 It is the study of algorithms and data
structures, including their
 formal and mathematical properties

 hardware realizations
 What’s the structure of a CPU?

 How is computer memory implemented?

 What is the most cost-effective kind of computer
hardware?

 linguistic realizations

 applications

John Edgar 20

 It is the study of algorithms and data
structures, including their
 formal and mathematical properties

 hardware realizations

 linguistic realizations
 What’s the clearest/shortest way to describe

computations?

 What’s the best way to organize large programs?

 applications

John Edgar 21

 It is the study of algorithms and data
structures, including their
 formal and mathematical properties

 hardware realizations

 linguistic realizations

 applications
 Graphics, artificial intelligence, databases,

networking, software engineering, etc.

John Edgar 22

 Telecommunications
 Medicine
 Information and Research
 Commerce
 Entertainment
 Finance
 Transportation
 …

 Hardware refers to computer equipment

▪ Central Processing Unit (CPU)

▪ Hard disk

▪ Input devices (mouse, keyboard)

▪ Output devices (printer, monitor)

 Software refers to the programs that give
computers their behaviour

 What is software?

▪ A set of instructions for a computer

▪ Programming therefore is telling the computer
what to do

 Why is programming (considered) hard?

▪ Because we want to solve hard problems

▪ Usually things we can’t easily do by hand

▪ And because computers are fundamentally stupid

 We write software to tell computers how to
solve a problem

▪ We’ve all given instructions before

▪ Directions to a house

▪ Using the microwave

 But, remember, computers are stupid

▪ They can’t deal with ambiguity

▪ Instructions must be precisely defined in perfect
grammar

 Though programs are written in an English-like
language they are very formal

▪ They must be written using correct syntax

▪ They must be precise and unambiguous

 A program is a sequence of instructions that must be
followed step by step

▪ Implementation of algorithms that can be processed by a
computer

▪ Each instruction must be correctly specified for the
program to function as desired

 A set of instructions for solving a problem
 Algorithms can be expressed in many

different languages, for example:

English

A programming language (C++ for example), or

Pseudocode

John Edgar 29

Input
positive integers a and b
Output
the greatest common divisor (GCD) of a and b

Algorithm
Repeat until a and b are the same value:

if a is greater than b:
set a to a – b

else:
set b to b – a

Return a as the answer

John Edgar 30

Try it when a = 91 and b = 65

2626

a

91

Repeat until a and b are the same value:
if a is greater than b:

set a to a – b
else:

set b to b – a

Return a as the answer

39

1313

b

65

Result

91

39

65

 Every step is unambiguous
 Input and output are clearly defined
 It must be executable in a finite amount of

time

John Edgar 32

 Every step is unambiguous

 Because it is going to be run by a computer that is so
stupid it makes Homer Simpson look like Albert Einstein

 Input and output are clearly defined
 It must be executable in a finite amount of time

John Edgar 33

 Every step is unambiguous
 Input and output are clearly defined

 Why? You know, can you, like, get me the thing over there
and like make that other thing from it that we were, like,
talking about the other day, you remember, the day when,
like, that thing happened that was so cool, and you said
"hey wouldn't be, like, neat if we had a thing like that".

 It must be executable in a finite amount of
time

John Edgar 34

 Every step must unambiguous
 Input and output are clearly defined
 It must be executable in a finite amount of time

 If it doesn't run in a finite amount of time then waiting
around for it to finish is going to be tricky
Even if you are immortal it's going to be very dull

John Edgar 35

 Analysis

▪ What is the problem?

 Design

▪ What is the solution?

 Programming

▪ Write the program

 Testing

▪ Make sure the program works

Implementation

 Correct
 Reliable
 Well designed
 Affordable
 Maintainable

 A program is written using a programming
language

 There are different kinds of languages

▪ Machine language

▪ Assembly language

▪ High level languages

▪ C, C++, Lisp, Python, Java, Fortran, Perl, …

 Machine language is so called because it can
be processed directly by a computer

 A program is a sequence of instructions

▪ Each instruction code is represented by a number

▪ Each number is represented in binary

▪ i.e. 0s and 1s

 Machine languages are very hard for humans
to write and understand

 Assembly languages are human readable
versions of machine code

▪ Numeric codes are replaced by simple strings

 It is simple to convert an assembly language
program into machine code

 Assembly language is made up of very low
level instructions

▪ Simply adding two numbers may require four or
five separate operations!

 High level languages are much easier to write
and understand

▪ Although their compilers are more complex

▪ C++ is a high-level language

 C++ is a high level programming language

▪ It can be compiled into machine code

▪ And executed on a computer

 Programming languages are formal and lack
the richness of human languages

▪ If a program is nearly, but not quite syntactically
correct then it will not compile

▪ The compiler will not “figure it out”

 Create in 1972 by Dennis Ritchie of
Bell Labs

▪ When he and Ken Thompson were
designing Unix

▪ Developed from Thompson’s B language

 Developed to be used as a tool for
programmers

▪ Working on low level system programs

 Started in 1979 when Bjarne Stroustrup
wanted to extend C to use classes

▪ First called C with Classes

▪ In 1983 it was named C++

▪ C++ Programming Language
published in 1985

 In 2011 the C++11 standard was released with
substantial changes to the language

 Efficient

▪ Compact and runs quickly

▪ In some ways similar to assembly language

 Portable

▪ Programs run on one system can be run with little
modifications on other systems

 Flexible

▪ Allows programmers a lot of control

 Widely used

 With flexibility and freedom come the
possibility of more mistakes

 While compact it can be harder to learn with
than more recent languages

 C++ has a variety of ways of achieving the
same ends

▪ Some are usually better, safer, or more efficient
than others

▪ It is a hard language to master

