
19/06/11 1

Notes #8

Functions
Chapter 6

CMPT 125/128
� Dr. B. Fraser

19/06/11 2

Topics

1) How can we break up a program into
smaller sections?

2) How can we pass information to and from
functions?

3) Where can we put functions in our code?

19/06/11 3

Functions

19/06/11 4

Functions

� Functions:

� Each function should perform...
� Also called methods, or procedures.
� Ex:

� hold the window open, display the menu, ...
� Allows for the divide and conquer approach:

� Divide: split the big problem down into multiple
smaller problems.

� Conquer:

19/06/11 5

Function definition

// A simple C++ program.
#include <iostream>
using namespace std;

void displayMsg() {
cout << "Hello world";

}

int main () {
displayMsg();
return 0;

}

The type of value/information
the function returns.

 displayMsg.

List of variables to
hold values passed
into the function.

 Statements to
carry out the task of the function.

Must have () on call or get msg:
��������	
������������������
���������������������

19/06/11 6

Function definition

� A function (like a variable) must be

� For the moment, put the definition of a function earlier
(above) in the file than any calls to the function;
otherwise will not compile.

� Function Return Type:
� a specific type (such as int or double); or
�

hiBye.cpp Example

19/06/11 7

Review

� What is the difference between defining a function
and calling a function?

� Write a function to display "I code therefore I am."

19/06/11 8

Getting data
in and out

of a function.

19/06/11 9

Function Parameters

� Arguments:

� Parameter List:

� Inside the (...) of the function header.
� May be empty if no parameters required.

� Parameters:

� These are variables inside the method.

displaySum(2, 'a'); void displaySum(int x, char y) {
cout << "Sum: " << (x + y);

}

Arguments Parameter List

 Parameters

displaySum.cpp

Function call (use): Function definition:

19/06/11 10

Returning a value

� The return statements does 2 things:
� Causes the current function to exit,

returning control to the calling function.
�

/*
Return the number of points the user scored based
on the number of zombies killed.
Returns 0 if number killed is less than 0.

*/
int calcScore(int numZombies) {

if (numZombies < 0) {
return 0;

}
return numZombies * POINTS_PER_ZOMBIE;

}

19/06/11 11

Review

� Write a function:
� named add()
� which accepts 2 float parameters; and
� returns the sum of the two parameters as a float

19/06/11 12

Local vs Global Scope

19/06/11 13

Local variables

� Local variables:

� Restricted scope (visibility) to within the function.
� Restricted lifetime to when function is executing.
� (These Includes function parameters.)

� What's that mean?
� Cannot use a local variable outside the function.
� Local variables are...

Next time through, a new one is created.

local.cpp 19/06/11 14

Global variables

� Global variables are

� Accessible anywhere between its definition and the
end of the .cpp file.

� Lifetime is the same as the program.
� Guidelines:

� Good for constants:
const int DAYS_PER_WEEK = 7;

� Often problematic for variables: can be very

� Use local variables as much as possible.

19/06/11 15

Scope and variable names

� Scope is

� Global scope:
� Local scope to a function: Inside a function.
� Blocks: Any block {...}, such as for a while loop.

� You could reuse a variable name in different
nested scopes, but is very confusing!

� Try and give variables in nested scope unique
names.

scopeName.cpp 19/06/11 16

Static local variables

� Static local variables:
� scope: accessible inside the local function only;
� lifetime: ...

Lifetime same as the program.
� Only initialized once!

� Example:
int getNewNum() {

static int nextNum = 0; // Done once!
return ++nextNum;

}

static.cpp

First value returned is...

19/06/11 17

Scope, Lifetime, and Puppies

Local Global

Temporary

Persistent

Scope

Li
fe

tim
e

19/06/11 18

Pass-by-reference vs
pass-by-value

19/06/11 19

Pass by value

� Normally, only the value of an argument is passed
into the function's parameter.

� Changing the parameter's value in a function...

void growOlder(int inVal) {
inVal++;

}

int main () {
int age = 25;
growOlder(age);
cout << "Age is: " << age << endl;

}

passByValue.cpp 19/06/11 20

Inside the function.Inside calling code.

Explaining pass by value

� Pass by value:
function's parameter is set to a copy of argument.

� Changing the copy does not affect the original.

25

age
25

inVal

inVal++;
Operations on

inVal never
affect age. But what if you want to change the

value of age when you change inVal?

19/06/11 21

Explaining pass by reference
� Reference:

� one variable refers to the actual memory used
by the another variable...

� Pass by reference:
function's parameter refers to the actual argument.

� Changing the parameter's value...
Inside calling code.

25

age
Inside the function.

inVal

inVal++;

Operations on inVal
always affect age.

19/06/11 22

Pass by reference

� To pass-by-reference, put an & between the
parameter's type and name in the parameter list.

� This makes the function's parameter an alias for the
calling argument.

void growOlder(int &inVal) {
inVal++;

}

int main () {
int age = 25;
growOlder(age);
cout << "Age is: " << age << endl;

}
passByValue.cpp

say: "inVal is a
reference to an int."

19/06/11 23

Uses for pass-by-reference
� Useful for passing back multiple values:

// Return true if successfully read first and last names.
// Otherwise, return false.
bool readName(string &first, string &last);

� Cautions on Use:
� Use pass-by-value as much as possible!
� Use a return value to pass back a single value.
� Arguments for pass-by-reference...

� Ex:
string a, b;
readName(a, b); // Good
readName("Hello", "World"); // Compile Error.

Example: Write a function to swap the value of 2 int variables. 19/06/11 24

Prototypes

19/06/11 25

Prototypes

� Must know some things about a function to call it.
� Function prototypes eliminates the need to put

int main () {
doStuff();
return 0;

}

void doStuff() {
...

}

myProgram.cpp

int main () {
doStuff();
return 0;

}

void doStuff() {
...

}

myProgram.cpp
This is the
prototype.

We can now call
doStuff() above

where the
function is
defined.

19/06/11 26

Needed information to call

� To call a function we need to know:
�

� number, type, and order of parameters,
� return type of function.

� Function prototype idea:
� Rather than defining the whole function at the

top, tell the compile at the top of the .cpp file

19/06/11 27

Using prototypes
� Function prototype is similar to a function definition

except:
� (place a ';' instead of {...})
� Do not need names for parameters.

// Prototype
void printSum(int x, int y); // or: void printSum(int, int);

int main () {
printSum(1,2);
return 0;

}

// Display the sum of the two values.
void printSum(int x, int y) {

cout << x << " + " << y << " = " << (x + y) << endl;
}

prototype.cpp 19/06/11 28

Prototype and references

� When using pass by reference,
function prototype and definition must have the &.

void growOlder(int &inVal);

int main () {
int age = 25;
growOlder(age);
cout << "Age is: " << age << endl;

}

void growOlder(int &inVal) {
inVal++;

}

Equivalent prototypes:
void growOlder(int &inVal);
void growOlder(int& inVal);
void growOlder(int &);
void growOlder(int&);

19/06/11 29

Summary

� Function definition: type, name, parameter list, body.
� Function call must use (): int age = getAge();
� Use return to pass back a value.
� Local variables exist only inside the function.

� Static local variables maintain value between calls.
� Global variables often bad; global constants good!
� Pass-by-...

� Pass-by-value: pass in just a copy.
� Pass-by-reference: working on actual argument.

� Use prototypes to define function below a call to it.

