
25/05/11 1

Input and Expressions
Chapter 3
Slides #4

CMPT 125/128
� Dr. B. Fraser

25/05/11 2

Topics

1) How can we read data from the keyboard?
2) How can we calculate values?
3) How can we manage the type of a value?
4) How can we round or get random numbers?

25/05/11 3

Input with cin
Section 3.1

25/05/11 4

Input

� Almost every computer program needs input.
� Examples:

� Calculate # pizzas for a party: input # people.
� Calculate gas mileage: input distance and fuel used.

� Input with cin:...
int people = 0;
cin >> people;

� >> is the...
� cin waits for the user to type in...

� Places the answer in the given variable.

25/05/11 5

Prompts
� Prompting the User:

� cout: Display a prompt to user asking for input.
� cin: Read keyboard input into a variable.

#include <iostream>
using namespace std;

int main() {
int favNum = 0;

// Read in user's favourite number:
cout << "Enter your favourite number: ";
cin >> favNum;
cout << "Your favourite number is: " << favNum<<endl;
return 0;

} Enter your favourite number: 42
Your favourite number is: 42

favNum.cpp 25/05/11 6

Input Example

youtube clip.

// Ask the user for their personal information.
#include <iostream>
#include <string> // MUST INCLUDE THIS!!
using namespace std;

int main() {
string name; float height; int speed;
cout << "What is your name? ";
cin >> name;
cout << "What is your height in meters? ";
cin >> height;
cout << "What is the airspeed velocity of an unladen swallow? ";
cin >> speed;
cout << endl;
cout << "Hello Sir " << name << ", whose height is " << height << "."<<endl;
cout << "A swallow's airspeed is NOT " << speed << "!"<<endl;

return 0;
} bridgeKeeper.cpp

25/05/11 7

User enters 10.5.
age gets 10, but stops on '.'

so it's read into height.

Buffered input
� Keyboard data is read into an...

� cin pulls data out of the buffer as required.

What is your age? 10.5
What is your height in meters?
Your age is 10, and height is 0.5.

// Demonstrate data being left in the buffer.
#include <iostream>
using namespace std;
int main() {

int age;
float height;

cout << "What is your age? ";
cin >> age;
cout << "What is your height in meters? ";
cin >> height;
cout << endl;
cout << "Your age is " << age;
cout << ", and height is " << height<<"."<<endl;
return 0;

}

What is your age? 12
What is your height in meters? 2.51

Your age is 12, and height is 2.51.

dataInBuffer.cpp 25/05/11 8

Chaining

� Chaining:
� using more than...

in a statement.
� Examples:

� cout << "Hello " << "world!" << endl;
� int width, height, length;

cin >> width >> height >> length;

25/05/11 9

Multiple inputs
// Demonstrate cin chaining with a rectangle.
#include <iostream>
#include <string> // NEEDED!
using namespace std;
int main() {

double length, width;
string name;
cout << "Describe a rectangle: "<<endl;
cout << "Enter: length width name [ENTER]"<<endl;
cin >> length >> width >> name;
double area = length * width;
cout << endl;
cout << "Box '" << name << "' = " << length << " x ";
cout << width << ", area is " << area << endl;
return 0;

}

cin gives first value to length,
then width, then name.

Must be entered in

Describe a rectangle:
Enter: length width name [ENTER]
2 3.5 Small[ENTER]

Box 'Small' = 2 x 3.5, area is 7

multipleInput.cpp 25/05/11 10

Review

1.What is the >> operator called?

2.Write a single C++ statement to read in the following
two variables:

int age; float height;

3.True of false: You need to press enter after typing in
data being read by a cin statement?

25/05/11 11

Math Expressions
Section 3.2

(And not like "Wow! Math is great!")

25/05/11 12

Expressions

� Expression:
� A statement that...
� Usually has an operator.

� Examples:
result = 3;
result = x * 2;
result = 1 * x + 2;

� Expressions usable anywhere a value is needed:
� cout << "Big number " << (1 + 2) << endl;

25/05/11 13

Order of Operations

� What is the value of result?
int result = 4 + 10 / 2;

� Is it 7 or 9? (4 + 10) / 2 or 4 + (10 / 2)
� Each operator is given a precedence:

� Higher precedence operators are applied first.
� / is higher than +, so the answer is...
� Add brackets to force an ordering.

� Associativity:
� Apply the operators from right-to-left, or left-to-right?
� +, - are left to right: do the one on the...
� =, += are right to left: do the one on the...

25/05/11 14

Operator precedence

� Operators at same

evaluated based on
associativity.

� * and / from L to R
� = and += from R to L

� Examples:
� result = -20 + 9 / 5;
� result = (-20 + 9) / 5;
� val = 6 + 5 * 4 / 3 * 2;
� sum = sum + 10;

Prec.
Level

Op. Operation Associates

1 [] Array Index L to R
2 +

-
unary plus
unary minus

R to L

3 * /
%

mult, div,
remainder

L to R

4 + - add subtract L to R
5 <<

>>
stream ins.
extract.

L to R

6 < <=
> >=

comparisons L to R

7 = +=
-= *=

...

assignments R to L

See text appendix B for full table.
Order can be forced by parentheses.

25/05/11 15

Brackets

� A statement can be correct, but unreadable:
� result = 1 + 2 / 6 - 1 * 3 / 4 - 3 - -3 * +4;

� Add brackets to make it clear:
� result = 1 + (2 / 6) - (1 * 3 / 4) - 3 - ((-3) * (+4));

25/05/11 16

Expression tree

� Represent res = (-6 + 5 * 4 / (3 * 2)) as a tree:

*

+

*

/

� Operands as leaves.
� Operators as

branching nodes.
� Evaluate from the

� Operations lower in the
tree have

24 356res

=

-

25/05/11 17

Review
� Draw an expression tree for the following:

answer = 5 * x + 6 * (1 – x);

25/05/11 18

Type conversions
Sections 3.3, 3.4

25/05/11 19

Type ranking

� All types have a rank:
� The larger the number that it can

store, the higher its rank.
� Type promotion:

� Conversion from a lower rank to a
higher rank.

� Type demotion:
� Conversion from a higher rank to a

lower rank.
� Generally you don't lose information in

a promotion, but you might in a
demotion.

Type Ranking
(Highest on top)
double
float
unsigned long
long
unsigned int
int
unsigned short
short
char

25/05/11 20

Type Conversions

� Managing types in expressions:
� All values in C++ have a type.
� May need to

double distance = 100; // double <-- int
� Two Types of conversions:

� done automatically (above example)
� Also called type coercion.

� done by expression in code.

25/05/11 21

Implicit type conversion rules

1) char, short, unsigned short promoted to int.

� Example:
char cost = 50;
short count = 3000;
int total = cost * count;

� This is done to make it 'easier' for the computer
to do the computation.

� The int type is generally setup to be an efficient size
for calculations on most machines.

25/05/11 22

Implicit type conversion rules
2) Operators promote lower rank operand to higher

operand's rank.

� Example:
float f = 10.0;
double d = 1.1;
cout << (d / f) << (f / d);

� What happens here?
int i = 5;
long l = 10;
float f = 100;
cout << i * l * f;

Operands to / and * are
double and float.

The float is

double in both cases

* associates...

i*l:
int i promoted to long.

(i*l) * f:
(i*l) is of type long,
promoted to float.

25/05/11 23

Implicit type conversion rules

3) Final value of an assignment is converted to data
type of variable.

� May be a promotion or demotion.
int people = 10, apples = 15;
float each = apples / people;

� Floating point to Integer...
float purchase = 10, tax = 1.12;
long cost_l = purchase * tax;
float cost_f = purchase * tax;

Performs

15/10 = 1!

each = 1.0

10.0 * 1.12 = 11.2.

cost_l = 11
cost_f = 11.2

25/05/11 24

Review

1.What is the value of each of the following?
a. int a = 2.987;

b. float b = 1 / 2;

c. cout << ('a' + 1);

d. int d = 1.5 + 1.5;

25/05/11 25

Explicit type conversion

� Sometimes we want to force the compiler to
treat a value as a different type:

int people = 10, apples = 15;
float each = apples / people;

� We would like the answer to be 1.5!
� Must explicitly cast the value, which forces a

promotion or demotion, using static_cast
each = static_cast<float>(apples) / people;

25/05/11 26

How much do you want to be paid?
// Calculate your hourly wage from a yearly salary.
#include <iostream>
using namespace std;

int main() {
// Constants for a working year:
long WEEKS_PER_YEAR = 50;
long HOURS_PER_WEEK = 40;
long HOURS_PER_YEAR = WEEKS_PER_YEAR * HOURS_PER_WEEK;

// Read in the yearly salary.
long salary;
cout << "Enter the yearly salary you would like: $";
cin >> salary;

// Calculate the wage and display it.
float hourlyWage = static_cast<float>(salary) / HOURS_PER_YEAR;
cout << "So, ask for an hourly wage of $" << hourlyWage << "," << endl;
cout << "you will earn $" << (hourlyWage * HOURS_PER_YEAR) << " per year."<<endl;
return 0;

}

Enter the yearly salary you would like: $123456
So, ask for an hourly wage of $61.728,
you will earn $123456 per year.

hourlyWage.cpp

25/05/11 27

Casting notes

� Casting only...
int a = 15, b = 10;
double x = static_cast<double>(a) / b; // =
double y = a / b; // =

� Be careful to cast the...
double p = static_cast<double>(a) / b; // =
double q = a / static_cast<double>(b); // =
double r = static_cast<double>(a / b); // =

� Other (older) ways to cast
� Use static_cast in this course,

see the text for more.
Comments show the value.

Output to screen,
may show differently:

cout<<1.0; outputs "1".

25/05/11 28

Overflow & Underflow
Section 3.5

25/05/11 29

Overflow & Underflow
� Each type has a maximum value it can store.

� Maximum + 1 overflows to the most negative.
� Minimum – 1 underflows to the most positive.

Test starts out at: 32767
Adding one gives us: -32768
Now subtracting 1: 32767

// Work with overflow/underflow
#include <iostream>
using namespace std;

int main() {
// Demonstrate an overflow/underflow
short test = 32767;
cout << "Test starts out at: "<<test<<endl;
test = test + 1;
cout << "Adding one gives us: "<<test<<endl;
test = test - 1;
cout << "Now subtracting 1: "<<test<<endl;
return 0;

} overflow.cpp 25/05/11 30

Constants
Section 3.6

25/05/11 31

Constants

� We have already used literal constants:
int x = 10; // Numeric constant
cout << "Hello world!"; // String literal

� Raw number in code are magic numbers:
int h = m / 60;
long c = s / 72;

� Use named constants like variables:
� const int MIN_PER_HOUR = 60;

int h = s / MIN_PER_HOUR;

25/05/11 32

const
� const qualifier makes variable...

const double TAX_RATE = 0.12;
const short DAYS_PER_WEEK = 7;

� Constants must be given a value when created.
� Name is upper case by convention.
� Program cannot modify value of a constant:

� TAX_RATE = 0.13; // ERROR!

� Advantages:
� Program becomes more...
� Can change value in entire program in one spot.

� Ex: change tax rate that's used in 100 calculations!

25/05/11 33

Example with const
// Work with constants.
#include <iostream>
using namespace std;

int main() {
const double PI = 3.14159;
const int DAYS_PER_WEEK = 7;
double diameter;
cout << "How big a pizza did you order? ";
cin >> diameter;

double radius = (diameter/2);
double area = PI * radius * radius;
double pizzaPerDay = area / DAYS_PER_WEEK;
cout << "You can eat "<<pizzaPerDay

<<" square inches of pizza per day this week."<<endl;
return 0;

}

How big a pizza did you order? 10
You can eat 11.22 square inches of pizza per day this week.

pizzaArea.cpp 25/05/11 34

Guide to Constants

� Which of the following literal constants would
be best made into named constants?

� int numStudents = 0;

� int next = numStudents + 1;

� int daNum = numStudents – 72;

25/05/11 35

Multiple and Combined Assignments
Section 3.7

25/05/11 36

Assignment Operators

� Combine an operation with assignment:
� +=, -=, *=, /=, %=

� Examples:
� a += b; // means a = a + b;
� a *= b; // means a = a * b;
� a /= 2 + 3; // means...

25/05/11 37

Multiple Assignments

� C++ can assign values to multiple variables in
one statement:

� int a = 10, b = 20, c =30;
a = b = c = 0; // Set all 3 variables to 0.
a = b = c = 10*5; // Set all 3 variables to 50.

� Basically, (a = b) does two things:
� sets a to be equal to the value of b; and
�

int x, y = 10;
cout << (x = y); // sets x to 10, and outputs "10"

25/05/11 38

Math Functions
Section 3.11

25/05/11 39

Exponents

� Use the pow() function from the cmath library:
� #include <cmath> // In the cmath library.
� result = pow (10, 2); // 102

� result = pow (x+1, y); // (x+1)y

� pow Function details:
double pow(double base, double exponent)

Returns the value of
the base raised to the

exponent.

Result is of type
double.

Takes 2 arguments:

a base and an
exponent,

both of type double.

Function
name is

pow

25/05/11 40

Area of a pizza

Enter diameter of the pizza: 18
Pizza of diameter 18 has area 254.469.

// Calculate the area of a pizza
#include <iostream>
#include <cmath> // NEEDED!
using namespace std;

int main() {
double diameter;
cout << "Enter diameter of the pizza: ";
cin >> diameter;

// Area is Pi * r^2
double area = 3.14159 * pow(diameter / 2, 2);
cout << "Pizza of diameter " << diameter;
cout << " has area " << area << ".\n";

return 0;
}

pizzaArea.cpp

25/05/11 41

Math Functions

� Some math functions in <cmath>:
int a = 0;
double y = 0;

a = abs (-10); // Returns positive value (10)

y = log10 (10.5); // Log base 10.

y = log (10.5); // Natural log (ln)

// Ceiling: round up.

y = sqrt(25.0); // Square root

y = sin(1.1); // sin function. Also tan, cos.

hypotenuse.cpp 25/05/11 42

'Random' numbers

� Computers are not Random
� But we would like random numbers!

� Use rand() to return a pseudorandom integer
between 0 and 32767

� #include <cstdlib>
� int a = rand();

int b = rand();
int c = rand();

� However:
� Each time the program is run,

a will have the same value, b will, and c will!

25/05/11 43

Seed

� The pseudorandom sequence is based on a seed
� use srand() to seed the sequence once.

srand(42);
� Based on a certain seed, the program

� Randomize by the timer
� Computers have clocks.
� We can get what seems a very random seed by

using the timer:
#include <ctime>
srand(time(0));

25/05/11 44

Dice rolling
// Experiment with rand
#include <iostream>
#include <cstdlib> // NEEDED for rand() and srand()
#include <ctime> // NEEDED for time()
using namespace std;
int main() {

// Pick a random seed based on the timer
srand(time(0));
// Do a bunch of D20 rolls (1 to 20):
const int MAX_VAL = 20;
cout << "Rolling: " << (rand() % MAX_VAL + 1)<< endl;
cout << "Rolling: " << (rand() % MAX_VAL + 1)<< endl;
cout << "Rolling: " << (rand() % MAX_VAL + 1)<< endl;
cout << "Rolling: " << (rand() % MAX_VAL + 1)<< endl;
// some omitted here.....
cout << "Rolling: " << (rand() % MAX_VAL + 1)<< endl;
return 0;

}

Rolling: 17
Rolling: 11
Rolling: 17
Rolling: 17
Rolling: 2
Rolling: 2
Rolling: 18
Rolling: 8
Rolling: 7
Rolling: 8
Rolling: 19
Rolling: 6

diceRolls.cpp

25/05/11 45

Summary

� Keyboard input: cin >> var1;
� Chaining: cout << a << b; or cin >> x >> y;
� Expressions calculate values using operators.

� Operator precedence gives us expression trees.
� Implicit type conversions happen automatically.
� Explicit type conversions by static_cast.

� Use named constants (const), not magic numbers.
� Combined assignment operators like x += 2;
� Math functions like pow(), ceil()
� Random functions srand(), rand(), and timer()

