
Introduction to Java
Chapters 1 and 2
The Java Language – Section 1.1
Data & Expressions – Sections 2.1 – 2.5

Instructor: Scott Kristjanson
CMPT 125/125
SFU Burnaby, Fall 2013

Wk01.2 Slide 2Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

2

Scott Kristjanson – CMPT 125/126 – SFU

Scope

Introduce the Java programming language
 Program, Class, and Methods
 The Use of White Space and Comments
 Strings, Concatenation, and Escape Sequences
 Declaration and Use of Variables
 Java Primitive Data Types
 Syntax and Processing of Expressions
 Mechanisms for Data Conversion

Wk01.2 Slide 3Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

3

Scott Kristjanson – CMPT 125/126 – SFU

Java

A computer is made up of hardware and software
• hardware – the physical, tangible pieces that support the computing effort
• Program – a series of instructions that the hardware executes

Programs are sometimes called Applications
Software

• consists of programs and the data those programs use
• Data includes files on disk such as pictures, templates, and databases
• Data can also be input from a user, the internet, or from devices

Wk01.2 Slide 4Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

4

Scott Kristjanson – CMPT 125/126 – SFU

Java

A programming language specifies the words and symbols
that we can use to write a program

A programming language employs a set of rules that dictate
how the words and symbols can be put together to form
valid program statements – this is called Syntax

The Java programming language was created by Sun
Microsystems, Inc.

It was introduced in 1995 and its popularity grew quickly, it is
now the #1 most widely used programming language[2]

Wk01.2 Slide 5Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

5

Scott Kristjanson – CMPT 125/126 – SFU

The Java Programming Language

In the Java programming language:
• a program is made up of one or more classes
• a class contains one or more methods
• a method contains program statements

These terms will be explored in detail throughout the course

A Java application always contains a method called main

Wk01.2 Slide 6Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

6

Scott Kristjanson – CMPT 125/126 – SFU

A Java Program

public class MyProgram

{

}

class header

class body

Comments can be placed almost anywhere

Wk01.2 Slide 7Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

7

Scott Kristjanson – CMPT 125/126 – SFU

A Java Program

public class MyProgram

{

}

// comments about the class

public static void main(String[] args)

{

}

// comments about the method

method headermethod body

Wk01.2 Slide 8Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

8

Scott Kristjanson – CMPT 125/126 – SFU

Comments

Comments should be included to explain the purpose of the
program and describe processing

Do not explain the obvious, explain the intent of the code at a
higher level

They do not affect how a program works

Java comments can take three forms:
// this comment runs to the end of the line

/* this comment runs to the terminating
symbol, even across line breaks */

/** this is a javadoc comment */

Wk01.2 Slide 9Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

9

Scott Kristjanson – CMPT 125/126 – SFU

//**
// Lincoln.java Java Foundations
//
// Demonstrates the basic structure of a Java application.
//**

public class Lincoln
{

//---
// Prints a presidential quote.
//---
public static void main(String[] args)
{

System.out.println("A quote by Abraham Lincoln:");

System.out.println("Whatever you are, be a good one.");
}

}

A Very Simple Java Program

class header

class
body

Comments about the method

method header

method
body

Comments about the class

A quote by Abraham Lincoln:
Whatever you are, be a good one.

Output:

Wk01.2 Slide 10Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

10

Scott Kristjanson – CMPT 125/126 – SFU

Identifiers

Identifiers are the words a programmer uses in a program to name things
• can be made up of letters, digits, the underscore character (_), and the dollar sign

• cannot begin with a digit

Java is case sensitive
• Total, total, and TOTAL are different identifiers

By convention, programmers use different case styles for different types of
identifiers, such as

• title case for class names - Lincoln

• upper case for constants - MAXIMUM

Wk01.2 Slide 11Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

11

Scott Kristjanson – CMPT 125/126 – SFU

Identifiers

Sometimes we choose identifiers ourselves when writing a program
(such as Lincoln)

Sometimes we are using another programmer's code, so we use the
identifiers that he or she chose (such as println)

Often we use special identifiers called reserved words that already
have a predefined meaning in the language

A reserved word cannot be used in any other way

Wk01.2 Slide 12Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

12

Scott Kristjanson – CMPT 125/126 – SFU

Reserved Words

Java reserved words:

Wk01.2 Slide 13Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

13

Scott Kristjanson – CMPT 125/126 – SFU

White Space

In Java:
• Spaces, blank lines, and tabs are called white space
• White space is used to separate words and symbols in a program
• A valid Java program can be formatted many ways
• Extra white space and indenting is ignored by the Java compiler
• Proper use of White Space is important – for people to understand it
• Programs should be formatted to enhance readability, using

consistent indentation

Wk01.2 Slide 14Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

14

Scott Kristjanson – CMPT 125/126 – SFU

A Poorly formatted version of Lincoln

Java may not care about format, but your reader does…
Use White Space to highlight program structure
Unclear White Space will lose marks for readability in your assignments!

//***
// Lincoln2.java Java Foundations
//
// Demonstrates a poorly formatted, though valid, program.
//***

public class Lincoln2{public static void main(String[]args){
System.out.println("A quote by Abraham Lincoln:");
System.out.println("Whatever you are, be a good one.");}}

Wk01.2 Slide 15Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

15

Scott Kristjanson – CMPT 125/126 – SFU

This use of White Space is horribly unclear
and could get you ZERO on an assignment!
//**
// Lincoln3.java Java Foundations
//
// Demonstrates another valid program that is poorly formatted.
//**

public class
Lincoln3

{
public

static
void

main
(

String
[]

args)
{
System.out.println (

"A quote by Abraham Lincoln:")
; System.out.println

(
"Whatever you are, be a good one."

)
;

} }

A Horribly formatted version of Lincoln

Wk01.2 Slide 16Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

16

Scott Kristjanson – CMPT 125/126 – SFU

Chapter 2

Data & Expressions – Sections 2.1 – 2.5

Wk01.2 Slide 17Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

17

Scott Kristjanson – CMPT 125/126 – SFU

Scope

Character strings and concatenation
Escape sequences
Declaring and using variables
Java primitive types
Expressions
Data conversions

Wk01.2 Slide 18Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

18

Scott Kristjanson – CMPT 125/126 – SFU

Character Strings

A string of characters can be represented as a string literal by
putting double quotes around it

Examples:
"This is a string literal."
"123 Main Street"
"X"

Every character string is an object in Java, defined by the
String class

Every string literal represents a String object

Wk01.2 Slide 19Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

19

Scott Kristjanson – CMPT 125/126 – SFU

The println Method

In the Lincoln program, we invoked the println method to
print a character string

The System.out object represents a destination (the
monitor) to which we can send output

Wk01.2 Slide 20Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

20

Scott Kristjanson – CMPT 125/126 – SFU

The print Method

The System.out object provides another service as well

The print method is similar to the println method, except that it does
not advance to the next line

Therefore anything printed after a print statement will appear on the
same line

public class Countdown
{

//---
// Prints two lines of output representing a rocket countdown.
//---
public static void main(String[] args)
{

System.out.print("Three... ");
System.out.print("Two... ");
System.out.print("One... ");
System.out.print("Zero... ");

System.out.println("Liftoff!"); // appears on first output line

System.out.println("Houston, we have a problem.");
}

}

Three… Two… One… Zero… Liftoff!

Houston, we have a problem.

Output:

Wk01.2 Slide 21Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

21

Scott Kristjanson – CMPT 125/126 – SFU

String Concatenation

The string concatenation operator (+) is used to append one
string to the end of another

"Peanut butter " + "and jelly"

It can also be used to append a number to a string

A string literal cannot be broken across two lines in a program

Wk01.2 Slide 22Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

22

Scott Kristjanson – CMPT 125/126 – SFU

//**
// Facts.java Java Foundations
// Demonstrates the use of the string concatenation operator and the
// automatic conversion of an integer to a string.
//**
public class Facts
{

//---
// Prints various facts.
//---
public static void main(String[] args)
{

// Strings can be concatenated into one long string
System.out.println("We present the following facts for your " + "extracurricular edification:");
System.out.println();

// A string can contain numeric digits
System.out.println("Letters in the Hawaiian alphabet: 12");
// A numeric value can be concatenated to a string
System.out.println("Dialing code for Antarctica: " + 672);
System.out.println("Year in which Leonardo da Vinci invented “ + "the parachute: " + 1515);
System.out.println("Speed of ketchup: " + 40 + " km per year");

}
}

String Concatenation Example

We present the following facts for your extracurricular edification:
Letters in the Hawaiian alphabet: 12
Dialing code for Antarctica: 672
Year in which Leonardo da Vinci invented the parachute: 1515
Speed of ketchup: 40 km per year

Wk01.2 Slide 23Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

23

Scott Kristjanson – CMPT 125/126 – SFU

String Concatenation versus Addition

The + operator is also used for arithmetic addition
The function performed depends on the type of the operands
If both operands are strings, or if one is a string and one is a number, it
performs string concatenation.
If both operands are numeric, it adds them.
The + operator is evaluated left to right, but parentheses can force the order

public class Addition
{

//---
// Concatenates and adds two numbers and prints the results.
//---
public static void main(String[] args)
{

System.out.println("24 and 45 concatenated: " + 24 + 45);
System.out.println("24 and 45 added: " + (24 + 45));

}
}

24 and 45 concatenated: 2445
24 and 45 added: 69
24 and 45 concatenated: 2445
24 and 45 added: 69
24 and 45 concatenated: 2445
24 and 45 added: 69

Wk01.2 Slide 24Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

24

Scott Kristjanson – CMPT 125/126 – SFU

Escape Sequences

What if we wanted to print a the quote character?

The following line would confuse the compiler because it
would interpret the second quote as the end of the string

System.out.println("I said "Hello" to you.");

An escape sequence is a series of characters that represents
a special character

An escape sequence begins with a backslash character (\)
System.out.println("I said \"Hello\" to you.");

I said "Hello" to you.

Wk01.2 Slide 25Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

25

Scott Kristjanson – CMPT 125/126 – SFU

Escape Sequences

Some Java escape sequences:

Wk01.2 Slide 26Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

26

Scott Kristjanson – CMPT 125/126 – SFU

Variables

A variable is a name for a location in memory

Before it can be used, a variable must be declared by
specifying its name and the type of information that it will hold

int total;

int count, temp, result;

Multiple variables can be created in one declaration

data type variable name

Wk01.2 Slide 27Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

27

Scott Kristjanson – CMPT 125/126 – SFU

Variables

A variable can be given an initial value in the declaration

When a variable is used in a program, its current value is used
public class PianoKeys
{

//--
// Prints the number of keys on a piano.
//--
public static void main(String[] args)
{

int keys = 88;
System.out.println("A piano has " + keys + " keys.");

}
}

A piano has 88 keys.

Wk01.2 Slide 28Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

28

Scott Kristjanson – CMPT 125/126 – SFU

Assignment

An assignment statement changes the value of a variable
The assignment operator is the = sign

The expression on the right is evaluated and the result is stored in the variable
on the left

The value that was in total is overwritten
You can only assign a value to a variable that is consistent with the variable's

declared type

total = 55;

Wk01.2 Slide 29Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

29

Scott Kristjanson – CMPT 125/126 – SFU

Assignment

The right-hand side could be an expression
The expression on the right is completely evaluated and the
result is stored in the variable identified on the left

Wk01.2 Slide 30Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

30

Scott Kristjanson – CMPT 125/126 – SFU

Constants

A constant is an identifier that is similar to a variable except
that it holds the same value during its entire existence

As the name implies, it is constant, not variable

The compiler will issue an error if you try to change the value
of a constant

In Java, we use the final modifier to declare a constant
final int MIN_HEIGHT = 69;

Wk01.2 Slide 31Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

31

Scott Kristjanson – CMPT 125/126 – SFU

Constants

Constants are useful for three important reasons
• First, they give meaning to otherwise unclear literal values

• For example, MAX_LOAD means more than the literal 250

• Second, they facilitate program maintenance
• If a constant is used in multiple places, its value need only be updated in

one place

• Third, they formally establish that a value should not change, avoiding
inadvertent errors by other programmers

Wk01.2 Slide 32Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

32

Scott Kristjanson – CMPT 125/126 – SFU

Primitive Data Types

There are eight primitive data types in Java
Four of them represent integers

•byte, short, int, long
Two of them represent floating point numbers

•float, double
One of them represents characters

•char

And one of them represents boolean values
•boolean

Wk01.2 Slide 33Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

33

Scott Kristjanson – CMPT 125/126 – SFU

Numeric Types

The difference between the various numeric primitive types is
their size, and therefore the values they can store:

Wk01.2 Slide 34Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

34

Scott Kristjanson – CMPT 125/126 – SFU

Characters

A char variable stores a single character
Character literals are delimited by single quotes:

'a' 'X' '7' '$' ',' '\n'

Example declarations
char topGrade = 'A';

char terminator = ';', separator = ' ';

Note the distinction between a primitive character variable, which holds
only one character, and a String object, which can hold multiple
characters

Wk01.2 Slide 35Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

35

Scott Kristjanson – CMPT 125/126 – SFU

Character Sets

A character set is an ordered list of characters, with each
character corresponding to a unique number

A char variable in Java can store any character from the
Unicode character set

The Unicode character set uses sixteen bits per character
It is an international character set, containing symbols and

characters from many world languages

Wk01.2 Slide 36Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

36

Scott Kristjanson – CMPT 125/126 – SFU

Characters

The ASCII character set is older and smaller than Unicode

The ASCII characters are a subset of the Unicode character set, including:

uppercase letters
lowercase letters
punctuation
digits
special symbols
control characters

A, B, C, …
a, b, c, …
period, semi-colon, …
0, 1, 2, …
&, |, \, …
carriage return, tab, ...

Wk01.2 Slide 37Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

37

Scott Kristjanson – CMPT 125/126 – SFU

Booleans

A boolean value represents a true or false condition

The reserved words true and false are the only valid
values for a boolean type

boolean done = false;

A boolean variable can also be used to represent any two
states, such as a light bulb being on or off

boolean Bulb_On = false;

Wk01.2 Slide 38Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

38

Scott Kristjanson – CMPT 125/126 – SFU

Expressions

An expression is a combination of one or more operators and operands

Arithmetic expressions compute numeric results and make use of the
arithmetic operators

• Addition +

• Subtraction -

• Multiplication *

• Division /

• Remainder %

If either or both operands used by an arithmetic operator are floating
point, then the result is a floating point

Wk01.2 Slide 39Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

39

Scott Kristjanson – CMPT 125/126 – SFU

Division and Remainder

If both operands to the division operator (/) are integers, the result is an
integer (the fractional part is discarded)

The remainder operator (%) returns the remainder after dividing the
second operand into the first

14 / 3 equals

8 / 12 equals

4

0

14 % 3 equals 2

Wk01.2 Slide 40Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

40

Scott Kristjanson – CMPT 125/126 – SFU

Operator Precedence

Operators can be combined into complex expressions
result = total + count / max - offset;

Operators have a well-defined precedence which determines the order
in which they are evaluated

Multiplication, division, and remainder are evaluated prior to addition,
subtraction, and string concatenation

Arithmetic operators with the same precedence are evaluated from left
to right, but parentheses can be used to force the evaluation order

Wk01.2 Slide 41Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

41

Scott Kristjanson – CMPT 125/126 – SFU

Operator Precedence

What is the order of evaluation in the following expressions?

a + b + c + d + e a + b * c - d / e

a / (b + c) - d % e

a / (b * (c + (d - e)))

Wk01.2 Slide 42Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

42

Scott Kristjanson – CMPT 125/126 – SFU

Operator Precedence

What is the order of evaluation in the following expressions?

a + b + c + d + e
1 432

a + b * c - d / e
3 241

a / (b + c) - d % e
2 341

a / (b * (c + (d - e)))
4 123

Wk01.2 Slide 43Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

43

Scott Kristjanson – CMPT 125/126 – SFU

Expression Trees

The evaluation of a particular expression can be shown using
an expression tree

The operators lower in the tree have higher precedence for
that expression

Wk01.2 Slide 44Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

44

Scott Kristjanson – CMPT 125/126 – SFU

Operator Precedence

Precedence among some Java operators:

Wk01.2 Slide 45Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

45

Scott Kristjanson – CMPT 125/126 – SFU

Assignment Revisited

The assignment operator has a lower precedence than the
arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

Then the result is stored in the
variable on the left hand side

answer = sum / 4 + MAX * lowest;

14 3 2

Wk01.2 Slide 46Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

46

Scott Kristjanson – CMPT 125/126 – SFU

Assignment Revisited

The right and left hand sides of an assignment statement can
contain the same variable

First, one is added to the
original value of count

Then the result is stored back into count
(overwriting the original value)

count = count + 1;

Wk01.2 Slide 47Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

47

Scott Kristjanson – CMPT 125/126 – SFU

Increment and Decrement Operators

The increment and decrement operators use only one
operand

The increment operator (++) adds one to its operand
The decrement operator (--) subtracts one from its operand

The statement
count++;

is functionally equivalent to
count = count + 1;

Wk01.2 Slide 48Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

48

Scott Kristjanson – CMPT 125/126 – SFU

Increment and Decrement Operators

The increment and decrement operators can be applied in two forms:

Postfix:
counter++; // Increment counter after returning its value

Prefix:
++counter; // Increment counter before returning its value

Because of their subtleties, the increment and decrement operators
should be used with care until you have more experience with them.

When used as part of a larger expression, the two forms can have very
different effects

What is the output from this code fragment?
int counter = 1;
System.out.println("counter = " + counter++ + ++counter);

counter = 13
Why 13? Does counter now equal 13?
Of course not! counter’s final value is 3

Wk01.2 Slide 49Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

49

Scott Kristjanson – CMPT 125/126 – SFU

Assignment Operators

Often we perform an operation on a variable, and then store
the result back into that variable

Java provides assignment operators to simplify that process

For example, the statement
num += count;

is equivalent to
num = num + count;

Wk01.2 Slide 50Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

50

Scott Kristjanson – CMPT 125/126 – SFU

Assignment Operators

There are many assignment operators in Java, including the
following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

Wk01.2 Slide 51Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

51

Scott Kristjanson – CMPT 125/126 – SFU

Assignment Operators

The right hand side of an assignment operator can be a complex
expression

The entire right-hand expression is evaluated first, then the result is
combined with the original variable

Therefore
result /= (total-MIN) % num;

is equivalent to
result = result / ((total-MIN) % num);

Wk01.2 Slide 52Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

52

Scott Kristjanson – CMPT 125/126 – SFU

Assignment Operators

The behavior of some assignment operators depends on the
types of the operands

If the operands to the += operator are strings, the assignment
operator performs string concatenation

The behavior of an assignment operator (+=) is always
consistent with the behavior of the corresponding operator (+)

Wk01.2 Slide 53Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

53

Scott Kristjanson – CMPT 125/126 – SFU

Data Conversions

Sometimes it is convenient to convert data from one type to
another

For example, in a particular situation we may want to treat an
integer as a floating point value

These conversions do not change the type of a variable or the
value that's stored in it – they only convert a value as part of a
computation

Wk01.2 Slide 54Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

54

Scott Kristjanson – CMPT 125/126 – SFU

Data Conversions

Conversions must be handled carefully to avoid losing information
Widening conversions are safest because they tend to go from a small

data type to a larger one (such as a short to an int)
Narrowing conversions can lose information because they tend to go from

a large data type to a smaller one.
In Java, data conversions can occur in three ways

• assignment conversion
• promotion
• casting

Wk01.2 Slide 55Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

55

Scott Kristjanson – CMPT 125/126 – SFU

Data Conversions

Widening Conversions Narrowing Conversions

Wk01.2 Slide 56Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

56

Scott Kristjanson – CMPT 125/126 – SFU

Assignment Conversion

Assignment conversion occurs when a value of one type is assigned to a
variable of another

If money is a float variable and dollars is an int variable, the
following assignment converts the value in dollars to a float

money = dollars

Only widening conversions can happen via assignment

Note that the value or type of dollars did not change

Wk01.2 Slide 57Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

57

Scott Kristjanson – CMPT 125/126 – SFU

Promotion

Promotion happens automatically when operators in
expressions convert their operands

For example, if sum is a float and count is an int, the value of
count is converted to a floating point value to perform the
following calculation

result = sum / count;

Wk01.2 Slide 58Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

58

Scott Kristjanson – CMPT 125/126 – SFU

Casting

Casting is the most powerful, and dangerous, technique for
conversion

Both widening and narrowing conversions can be
accomplished by explicitly casting a value

To cast, the type is put in parentheses in front of the value
being converted

For example, if total and count are integers, but we want a
floating point result when dividing them, we can cast total

result = (float) total / count;

Wk01.2 Slide 59Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

59

Scott Kristjanson – CMPT 125/126 – SFU

Key Things to take away:
• The print and println methods are two services provided by the System.out object
• In Java, the + operator is used both for addition and for string concatenation
• An escape character can be used to represent a character that would otherwise cause a

compile error
• A variable is a name for a memory location used to hold a value of a particular data type
• Accessing data leaves them intact in memory, but an assignment statement overwrites old

data
• One cannot assign a value of one type to a variable of an incompatible type
• Constants hold a particular value for the duration of their existence
• Java has two types of numeric values: integer and floating point. There are four integer data

types and two floating point data types
• Java using 16-bit Unicode character set to represent character data
• Expressions are combinations of operators and operands used to perform a calculation
• The type of result produced by arithmetic division depends on the types of the operands
• Java follows a well-defined set of precedence rules that governs the order in which

operators will be evaluated in an expression
• Narrowing conversions should be avoided because they can lose information

Wk01.2 Slide 60Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

60

Scott Kristjanson – CMPT 125/126 – SFU

References:

1. J. Lewis, P. DePasquale, and J. Chase., Java Foundations: Introduction
to Program Design & Data Structures. Addison-Wesley, Boston,
Massachusetts, 3rd edition, 2014, ISBN 978-0-13-337046-1

2. Top 10 Most Popular Programming Languages website,
http://www.english4it.com/reading/40

3. L. Hafer, Computing Science 125/126 Course Notes, Summer 2013

4. D. Cukierman, Computing Science 125/126 Course Notes, Spring 2012

5. G. Baker, The Computing Science 120 Study Guide: Introduction to
Computing Science and Programming I, Fall 2010 Edition,
http://www2.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide

Wk01.2 Slide 61Slides based on Java Foundations 3rd Edition, Lewis/DePasquale/Chase
And course material from Diana Cukierman, Lou Hafer, and Greg Baker

61

Scott Kristjanson – CMPT 125/126 – SFU

Time for Questions

