
Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

1

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

Lab Exercises wk03 – Linux Command Line
Introduction to Using the Linux Command Line

Required Reading
Java Foundations – Chapter 2 – Data and Expressions

 Chapter 3 – Sections 3.1 to 3.5

 Chapter 4 – Section 4.8 – The For Statement

Instructions – PLEASE READ (notice bold and underlined phrases)

Lab Exercise has three parts:

A. Lab Demo – Watch Demo, reproduce it, show your TA

B. Exercises – To be started during the Lab, and completed by deadline

C. Submission – Submit specified exercise files by deadline

1. You are encouraged to work on these lab exercises in teams of two, however
each student must reproduce the demo and show the TA their own running
Java Project. Team members should alternate turns at the keyboard typing in
the code. You will start working during the lab time, and it is likely that you will
complete the demo but need to continue with the exercises later.

2. Submission deadline: 2:30pm Friday Sept 20. You should be able to
complete the work if you have completed the required reading for the lab.
Some topics discussed in this lab and needed for the exercises to be
submitted may be seen later in this week’s class! You may submit before the
deadline, if you so prefer. You may resubmit again later without penalty
provided you resubmit before the deadline.

3. The exercises are roughly presented in sequence so that you gradually
advance with the material. It is highly recommended, for your own benefit, that
you do ALL the exercises, and in the order provided. You will get lab
participation points even if you do not finish all the exercises (but you do have
to work on some of the exercises following your completion of the Demo in
order to get full participation points).

4. For this lab, there are four files that you must submit for marking. If working in
pairs you should submit only one version of the file and submit it for the group
that you define. If you are working individually, you may still need to define a
group with you as the only group member.

5. Keep a copy of everything you submit in your files.

6. Before you leave the CSIL labs, make sure that a TA looks at your work in
order to receive your attendance and lab active participation marks.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

2

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

7. Lab03 Intended learning outcomes

By the completion of the demo by the student, students should:
 Understand the basic use of the Linux Command Line interface
 Be able to use basic linux commands including man, ls, cd, cp, rm, pwd, and mkdir
 Be able to do simple editing via vim
 Be able to compile and run Java programs from the command line

Upon completion of the lab exercises, students should be able to write simple programs
that use:
 String Class for manipulating strings
 Scanner Class for reading user input
 Math Class methods for computing Power and Square Root
 Random Class for generating random numbers in a specified range

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

3

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

A. Lab Demo – Presented by TAs, and repeated by Students

Students must observe demo presented by TA, then reproduce it.

Student must have the TA check off demo program completion by end of
tutorial for full marks. Marks will be awarded for attendance but only partial
marks for incomplete work at the discretion of the TA.

Even though students may work in teams, each team member must create a
running project based on the demo for full marks.

The Linux Command Line
The first thing to say about Unix is that it’s all about openness and choice1: more openness and
choice than most people ever use. This is in stark opposition to the philosophy of Microsoft and
Apple, which provide you with one proprietary environment and severely limited choice. If you find
yourself cursing at Windows or OS X on a regular basis and asking “Why do I have to adapt to my
computer. Why can’t my computer adapt to me?” consider taking a serious look at Unix. You may
like it better, and the parts you do not like, you can change.

One of the powerful capabilities of Unix is the command shell. It should be no surprise that there
are choices here too. The two most common shells are bash (the default shell in CSIL) and tcsh.
Don’t like bash? You can change to tcsh with the chsh (‘change shell’) command.

The remainder of this demo will assume the CSIL Ubuntu defaults. The examples are from the
account skristja, so you will not see the exact same output.

Unlike Windows, in Unix pretty much everything is case-sensitive. Check for this when a command
does not work as you think it should.

When you are using the command line, file and directory names with spaces are awkward to use.
Avoid them if possible.

The Single Most Useful Unix Command
The single most useful Unix command when you are learning to use the Unix command line shell
is the man (output the ‘manual’) command. If you forget how to use it, try typing ‘man man’:

skristja@asb9838n-a07:~$ man man
MAN(1) Manual pager utils MAN(1)

NAME
 man - an interface to the on-line reference manuals

SYNOPSIS
 man [-C file] [-d] [-D] [--warnings[=warnings]] [-R

1 Linux is a particular variant of Unix. Ubuntu is a particular distribution of Linux.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

4

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

 encoding] [-L locale] [-m system[,...]] [-M path]
 [-S list] [-e extension] [-i|-I] [--regex|--wild‐
 card] [--names-only] [-a] [-u] [--no-subpages] [-P
 pager] [-r prompt] [-7] [-E encoding] [--no-hyphen‐
 ation] [--no-justification] [-p string] [-t]
 [-T[device]] [-H[browser]] [-X[dpi]] [-Z] [[section]
 page ...] ...
 man -k [apropos options] regexp ...
 man -K [-w|-W] [-S list] [-i|-I] [--regex] [section]
 term ...
 man -f [whatis options] page ...
 man -l [-C file] [-d] [-D] [--warnings[=warnings]]
 [-R encoding] [-L locale] [-P pager] [-r prompt]
 [-7] [-E encoding] [-p string] [-t] [-T[device]]
 [-H[browser]] [-X[dpi]] [-Z] file ...
 man -w|-W [-C file] [-d] [-D] page ...
 man -c [-C file] [-d] [-D] page ...
 man [-hV]

DESCRIPTION
 man is the system's manual pager. Each page argument
 given to man is normally the name of a program,
 utility or function. The manual page associated
 with each of these arguments is then found and dis‐
 played. A section, if provided, will direct man to
 look only in that section of the manual. The
 default action is to search in all of the available
 sections, following a pre-defined order and to show
 only the first page found, even if page exists in
 several sections

... followed by a complete description of how to use the man command ...

This looks pretty intimidating, but you just have to know how to read it. Each line starting with man
is one form of the command. Let’s take one of the lines:

man -f [whatis options] page ...

There is a command line flag ‘-f’, which will affect the way the man command behaves. Down in
the description of the man command, you find

Main modes of operation
-f, --whatis
Equivalent to whatis. Display a short description from the manual
Page, if available. See whatis(1) for details.

When you see text in square brackets, as ‘[whatis options]’, the square brackets indicate an
optional parameter. You can add options appropriate to the whatis command. (What might those
be? Try ‘man whatis’.) And then you must supply a page. Down in the description of the man
command, you find

Each page argument given to man is normally the name of a program,
utility or function. The manual page associated with each of these
arguments is then found and displayed.

The apropos (‘apropos of ’) command (an alias for ‘man -k’) is useful when you’re not sure what
you’re looking for. For example, you want to know how to list the contents of a directory, but don’t

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

5

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

remember the command name:
skristja@asb9838n-a07:~$ apropos -a list directory
chacl (1) - change the access control list of a file o...
dir (1) - list directory contents
File::Listing (3pm) - parse directory listing
ls (1) - list directory contents
ls (1posix) - list directory contents
ntfsls (8) - list directory contents on an NTFS filesystem
vdir (1) - list directory contents

Typically, you will be interested in commands in section (1) of the manual. Now you can use the
man command to find out more about these commands.

You will also want to know about the info command, and the Xubuntu help, the ‘Help’ entry
towards the bottom of the Applications Menu2.

Navigating the File System
As with all major operating systems, a Unix file system is a hierarchy of directories and files. For
those of you coming from the Windows or Mac worlds, directories are exactly equivalent to folders.
If you’d rather use a GUI, click on any of the default desktop icons (‘Home’, ‘File System’), or the
folder icon in the bottom (pop-up) panel. The GUI file browser is called thunar; you can start it from
the command line by typing the command

skristja@asb9838n-a07:~$ thunar

Where Am I?
To make sure we all start in the same place, execute the cd command:

skristja@asb9838n-a07:~$ cd

The cd (‘change directory’) command, with no arguments, will place you in your home directory.
(Here in CSIL, that’s the local home directory for the workstation.)

The pwd (‘print working directory’) command will print the path to the current directory:
skristja@asb9838n-a07:~$ pwd
/home/skristja

Of course, you should see your user id, not skristja.

What’s Here?
The ls (‘list’) command will list the files and subdirectories in the current directory (the set of files you see
may not be the same as shown here):

skristja@asb9838n-a07:~$ ls
android-sdk Documents Music sfuhome
C:\nppdf32Log\debuglog.txt Downloads Pictures Templates
Desktop examples.desktop Public Videos

Unix, like Windows and OS X, has hidden files and directories that hold configuration and state
information used by the operating system and various programs. To see these, add ‘-a’ to the
command line:

2 The menu at the top left of the screen, under the mouse head icon.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

6

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

skristja@asb9838n-a07:~$ ls -a
. Documents .local Templates
.. Downloads .mozilla Videos
android-sdk examples.desktop Music .viminfo
.bash_logout .gconf Pictures .Xauthority
.bashrc .gnome2 .profile .Xdefaults
.cache .gnome2_private Public .xscreensaver
.config .gstreamer-0.10 .pulse .xsession-errors
.dbus .gvfs .pulse-cookie
Desktop .ICEauthority sfuhome

Yes, there are lots of them. For example, the .config directory is used by the Xfce window
manager to store configuration information. The file .bashrc is executed by the bash shell as it
starts up. This is the place to put your own custom command aliases or remove default aliases
that you don’t like.

How can I tell which entries are files, and which are directories? On many systems, ls will
produce color-coded output, but if not, you can use the ‘-F’ flag:

skristja@asb9838n-a07:~$ ls -F
android-sdk@ Downloads/ Pictures/ Templates/
Desktop/ examples.desktop Public/ Videos/
Documents/ Music/ sfuhome/

Directories have a ‘/’ added to the end. Executable files have an ‘*’ tacked on the end. Plain old
files have nothing added. Other characters are used to indicate other file types.

If you give a file or directory name, ls will restrict itself to just that file or directory. Suppose that I
want some details for sfuhome. I can add the ‘-l’ and ‘-d’ flags to my ls command, with the directory
name, and get:

skristja@asb9838n-a07:~$ ls -ld sfuhome
drwx--s--x 11 skristja users 0 Sep 14 13:03 sfuhome

What does this output mean? Here’s a quick description of the fields that are interesting in an
introduction:

 drwx--s--x are the file permissions. These permissions show that sfuhome is a directory
(the leading ‘d’); that I can read (browse), write (create), and execute (access) the directory
(the next three characters, ‘rwx’); and that others can execute files in my sfuhome directory
only if they know the file name (the characters ‘--x’ mean that others can access the files
but not browse them). The chmod (‘change mode’) command is used to manipulate file
permissions. For optional reading on Linux permission bits, check out
http://danielmiessler.com/study/unixlinux_permissions/

 skristja is the owner of the file.

 0 is the size in bytes. (Recall that sfuhome is mounted from a file server in ITS; the mount
itself occupies no space.)

 Sept 14 13:03 is the time the directory was last modified.

Notice that many Unix commands use single-letter options, and you can combine those options
with a single ‘-’. Try ‘ls -alF’.

Suppose you just want to see the files with extension .txt? Unix command shells support
wildcard characters in file and directory names. The character ‘*’ matches any string; ‘?’ matches
any single character.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

7

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

skristja@asb9838n-a07:~$ ls *.txt
C:nppdf32Logdebuglog.txt
skristja@asb9838n-a07:~$ ls -d ?o*
Documents Downloads

In the second ls command, I asked for a listing of any name that has ‘o’ as the second character.
The directories Documents and Downloads matched.

Your ITS Home Directory
Your ITS home directory is mounted in the sfuhome directory.

How Do I Move Around?
To move to another place in the file system, use the cd (‘change directory’) command:

skristja@asb9838n-a07:~$ cd sfuhome
skristja@asb9838n-a07:~/sfuhome$ pwd
/home/skristja/sfuhome

Notice the change in the command prompt:
skristja@asb9838n-a07:~$

changed to
skristja@asb9838n-a07:~/sfuhome$

The default command prompt displays several pieces of information:
userid@hostname:current_directory$

Remember, in a Unix command shell the character ‘~’ in a file name is the abbreviation for your
home directory. You can, of course, change the prompt to anything you like. Consult the
documentation for bash.

How Do I Create a Directory?
The mkdir (‘make directory’) command will create a new, empty directory:

skristja@asb9838n-a07:~/sfuhome$ mkdir Demo
skristja@asb9838n-a07:~/sfuhome$ ls -F
bin/ CMPT 150/ desktop.ini* pub_html/
cmpt125/ Demo/ personal/ $RECYCLE.BIN/

What’s in a brand new directory?
skristja@asb9838n-a07:~/sfuhome$ ls -aF Demo
./ ../

In unix file systems, every directory will have two entries:

 A single ‘.’ (period) means ‘the current directory’.

 Two periods, ‘..’, means ‘the parent directory’.

You can use these abbreviations on the command line:
skristja@asb9838n-a07:~/sfuhome$ cd Demo
skristja@asb9838n-a07:~/sfuhome/Demo$ pwd
/home/skristja/sfuhome/Demo
skristja@asb9838n-a07:~/sfuhome/Demo$ ls ..

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

8

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

bin CMPT 150 desktop.ini pub_html
cmpt125 Demo personal $RECYCLE.BIN
skristja@asb9838n-a07:~/sfuhome/Demo$ cd ..
skristja@asb9838n-a07:~/sfuhome$

How Do I Delete a File or Directory?
To experiment with deleting files and directories, we need a worthless file or two. One way to
create an empty file is with the touch command:

skristja@asb9838n-a07:~/sfuhome$ cd Demo
skristja@asb9838n-a07:~/sfuhome/Demo$ touch worthless
skristja@asb9838n-a07:~/sfuhome/Demo$ ls -l worthless
-rw-r--r-- 1 skristja users 0 Sep 14 16:45 worthless

Another way is to redirect some output into a file:
skristja@asb9838n-a07:~/sfuhome/Demo$ echo 'Hi, Mom!' > himom.txt
skristja@asb9838n-a07:~/sfuhome/Demo$ ls -l himom.txt
-rwxr--r-- 1 skristja users 9 Sep 14 16:48 himom.txt

The echo command simply echoes its argument. The ‘>’ character redirects that output into the
file himom.txt. Be sure to use single quotes around ‘Hi, Mom!’ The exclamation mark ‘!’ has
special meaning to the shell (beyond the scope of this introductory demo). The file himom.txt
really isn’t executable3. You can remove the execute permission with the command ‘chmod a-x’:

skristja@asb9838n-a07:~/sfuhome/Demo$ chmod a-x himom.txt
skristja@asb9838n-a07:~/sfuhome/Demo$ ls -l himom.txt
-rw-r--r-- 1 skristja users 9 Sep 14 16:48 himom.txt

To delete a file, use the rm (‘remove’) command:
skristja@asb9838n-a07:~/sfuhome/Demo$ ls
himom.txt worthless
skristja@asb9838n-a07:~/sfuhome/Demo$ rm worthless
rm: remove regular empty file `worthless'? y
skristja@asb9838n-a07:~/sfuhome/Demo$ ls
himom.txt

Normally, the Unix command line does what you tell it, immediately, with no argument. The rm
command above prompted for confirmation because the default CSIL configuration creates an
alias:

skristja@asb9838n-a07:~/sfuhome/Demo$ alias rm
alias rm='rm -i'

The ‘-i’ (interactive) flag is the reason for the prompt. If you’re tired of having your computer ask
‘Are you sure?’ every time you ask it to do something, simply remove the alias:

skristja@asb9838n-a07:~/sfuhome/Demo$ unalias rm
skristja@asb9838n-a07:~/sfuhome/Demo$ touch worthless
skristja@asb9838n-a07:~/sfuhome/Demo$ ls
himom.txt worthless
skristja@asb9838n-a07:~/sfuhome/Demo$ rm worthless
skristja@asb9838n-a07:~/sfuhome/Demo$ ls

3 This is an artifact of sharing your ITS home directory between unix and Windows using a common file
system standard called CIFS. CIFS has difificulty with unix file permissions. Technical staff are trying to work
around this; at present the behaviour seems to be inconsistent from one workstation to the next.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

9

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

himom.txt

If you like the opportunity for a second thought, it’s easy to get it back:
skristja@asb9838n-a07:~/sfuhome/Demo$ alias rm='rm -i'
skristja@asb9838n-a07:~/sfuhome/Demo$ alias rm
alias rm='rm -i'

The proper place to put the unalias command is in your .bashrc file, where it will take effect
automatically. This is also a good place to add aliases you like or modify your default search path.
The search path is the set of directories that Unix searches when looking for executable files.

What about deleting a directory? Let’s move up out of the Demo directory and delete it:
skristja@asb9838n-a07:~/sfuhome/Demo$ cd ..
skristja@asb9838n-a07:~/sfuhome$ rm Demo
rm: cannot remove `Demo': Is a directory

Hmmm . . . not very successful. Some of you may know that there is another command, rmdir,
specifically for removing directories:

skristja@asb9838n-a07:~/sfuhome$ rmdir Demo
rmdir: failed to remove `Demo': Directory not empty

We could remove Demo/himom.txt and then remove the Demo directory, but that’s not really
necessary:

skristja@asb9838n-a07:~/sfuhome$ rm -r Demo
rm: descend into directory `Demo'? y
rm: remove regular file `Demo/himom.txt'? y
rm: remove directory `Demo'? y
skristja@asb9838n-a07:~/sfuhome$ ls
bin CMPT 150 personal $RECYCLE.BIN
cmpt125 desktop.ini pub_html

The ‘-r’ flag (‘recursive’) tells the rm command that you intend to remove the directory and its
contents, recursively. The interactive alias makes this more than a little tedious. Use this command
with care4 if you have removed the interactive alias for rm!

The ‘-r’ flag can be used in many commands, with the same meaning: Perform the action for the
directory and all its contents, recursively.

In general, Unix command line applications take the attitude that you know what you are doing.
They do not ask ‘Are you sure?’, they just do what you request. Think before you hit the return key.

How Do I Move Things Around?
Typically, you will want to copy or move files and directories. Recreate the Demo directory and
himom.txt.

skristja@asb9838n-a07:~/sfuhome$ mkdir Demo
skristja@asb9838n-a07:~/sfuhome$ cd Demo
skristja@asb9838n-a07:~/sfuhome/Demo$ echo 'Hi, Mom!' > himom.txt
skristja@asb9838n-a07:~/sfuhome/Demo$ ls

4 Some of you may be aware that the name of one of the university’s mail servers is rm-rstar. Now you can
appreciate the joke. Never type ‘rm -r *’ without careful thought to the consequences!

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

10

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

himom.txt

The cp (‘copy’) command will copy a file:
skristja@asb9838n-a07:~/sfuhome/Demo$ cp himom.txt another.txt
skristja@asb9838n-a07:~/sfuhome/Demo$ ls
another.txt himom.txt

You can copy entire directory trees with a single command using the ‘-r’ flag:
skristja@asb9838n-a07:~/sfuhome/Demo$ cd ..
skristja@asb9838n-a07:~/sfuhome$ cp -r Demo Demo2
skristja@asb9838n-a07:~/sfuhome$ ls
bin CMPT 150 Demo2 personal $RECYCLE.BIN
cmpt125 Demo desktop.ini pub_html
skristja@asb9838n-a07:~/sfuhome$ ls Demo
another.txt himom.txt
skristja@asb9838n-a07:~/sfuhome$ ls Demo2
another.txt himom.txt

The mv command (‘move’) will move a file or directory from one place to another. To rename a file,
simply move it to the new name:

skristja@asb9838n-a07:~/sfuhome$ mv Demo/himom.txt Demo2/byemom.txt
skristja@asb9838n-a07:~/sfuhome$ ls Demo
another.txt
skristja@asb9838n-a07:~/sfuhome$ ls Demo2
another.txt byemom.txt himom.txt

Moving a directory works the same way:
skristja@asb9838n-a07:~/sfuhome$ mv Demo2 NewDemo
skristja@asb9838n-a07:~/sfuhome$ ls
bin CMPT 150 desktop.ini personal $RECYCLE.BIN
cmpt125 Demo NewDemo pub_html
skristja@asb9838n-a07:~/sfuhome$ ls NewDemo
another.txt byemom.txt himom.txt

As mentioned before, Unix assumes you know what you’re doing. If you move or copy a file, and a
file of the same name already exists, it will be overwritten without complaint:

skristja@asb9838n-a07:~/sfuhome$ ls Demo
another.txt
skristja@asb9838n-a07:~/sfuhome$ ls NewDemo
another.txt byemom.txt himom.txt
skristja@asb9838n-a07:~/sfuhome$ mv NewDemo/himom.txt Demo/another.txt
skristja@asb9838n-a07:~/sfuhome$ ls Demo NewDemo
Demo:
another.txt

NewDemo:
another.txt byemom.txt

Be careful! If you would rather have a safety net, you can use the ‘-i’ option for mv and cp5:
skristja@asb9838n-a07:~/sfuhome$ ls Demo
another.txt
skristja@asb9838n-a07:~/sfuhome$ ls NewDemo

5 The current default aliases in CSIL provide ‘cp -i’ but not ‘mv -i’.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

11

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

another.txt byemom.txt
skristja@asb9838n-a07:~/sfuhome$ mv -i Demo/another.txt NewDemo
mv: overwrite `NewDemo/another.txt'? n
skristja@asb9838n-a07:~/sfuhome$ ls Demo
another.txt
skristja@asb9838n-a07:~/sfuhome$ ls NewDemo
another.txt byemom.txt

As you can see, typing ‘n’ (no) to the prompt aborts the move. If you like this style, create aliases.

Notice that the mv command specifies a specific file to move (Demo/another.txt) and only a
directory (NewDemo) for the target. This says ‘move the file to the target directory; but do not
change the file name.’

Recall that I mentioned that file and directory names with spaces are awkward. If you forget, or
you transfer a file from Windows and the name contains spaces, you must use quotes (single or
double) around the name:

skristja@asb9838n-a07:~/sfuhome$ cd Demo
skristja@asb9838n-a07:~/sfuhome/Demo$ touch "Name With Spaces"
skristja@asb9838n-a07:~/sfuhome/Demo$ ls
another.txt Name With Spaces
skristja@asb9838n-a07:~/sfuhome/Demo$ rm Name With Spaces
rm: cannot remove `Name': No such file or directory
rm: cannot remove `With': No such file or directory
rm: cannot remove `Spaces': No such file or directory
skristja@asb9838n-a07:~/sfuhome/Demo$ rm "Name With Spaces"
rm: remove regular empty file `Name With Spaces'? y
skristja@asb9838n-a07:~/sfuhome/Demo$ ls
another.txt

Unix command shells assume that spaces separate parameters6. Here, the shell interprets ‘Name
With Spaces’ as three separate file names, and complains that it can’t find any of them.

How Do I See What Is In a File?
In Unix, the file command will tell you what is in a file:

skristja@asb9838n-a07:~/sfuhome/Demo$ cd ~/sfuhome
skristja@asb9838n-a07:~/sfuhome$ ls
bin CMPT 150 desktop.ini personal $RECYCLE.BIN
cmpt125 Demo NewDemo pub_html
skristja@asb9838n-a07:~/sfuhome$ file Demo
Demo: setgid directory
skristja@asb9838n-a07:~/sfuhome$ file desktop.ini
desktop.ini: Little-endian UTF-16 Unicode text, with CRLF, CR line
terminators
skristja@asb9838n-a07:~/sfuhome$ file /bin/bash
/bin/bash: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.24,
BuildID[sha1]=0xe643cefb2c672ad94e955067c511537ddbab48da, stripped

It is a good idea to use common extensions for files (e.g., .pdf for a PDF file) but the file

6 So does the Windows command shell cmd.exe, but most people never use cmd.exe because it has so little
power. If you want to learn a decent shell for Windows, have a look at PowerShell, included in Windows 7.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

12

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

command does not rely on the file name extension. It looks at the content of the file77 and makes
its best guess, but it can be fooled.

Text files can be dumped to the terminal with the cat command, but usually you want a bit more
control. The best pager is a command called less (a pun at the expense of the less capable
pager program called more).

skristja@asb9838n-a07:~/sfuhome$ less Demo/another.txt
Hi, Mom!
Demo/himom.txt (END)

Type ‘q’ to exit the pager.

For serious file manipulation, you will want to use an editor. The two historical command line ascii
text editors are vim and emacs. You will want to experiment with them. They have radically
different approaches to editing, and the choice between them is entirely a matter of personal taste.
The learning curve is steep for both of them, but they are very powerful when it comes to creating
and editing program text8. There are many other editors available — ask friends, do some Internet
searching, find something that works for you. Eclipse has a built-in editor with considerable
knowledge of Java syntax and formatting.

To view PDF and Postscript, use the evince viewer. Adobe acroread is also available for PDF
files. An easy way to read PDF in Ubuntu is to use the graphical file browser, and simply double
click on the PDF file you want to open.

How Do I Compile and Run a Java Program?
Now that you know how to navigate the file system from the command line, the only remaining
essential skill is how to compile and run a Java program.

 If you still have the HelloWorld project in the Cmpt125 workspace from the first demo, you
can use it here. Starting in the sfuhome directory:

skristja@asb9838n-a07:~/sfuhome$ cd cmpt125
skristja@asb9838n-a07:~/sfuhome/cmpt125$ ls
HelloWorld
skristja@asb9838n-a07:~/sfuhome/cmpt125$ cd HelloWorld/
skristja@asb9838n-a07:~/sfuhome/cmpt125/HelloWorld$ ls
bin src
skristja@asb9838n-a07:~/sfuhome/cmpt125/HelloWorld$ cd src
skristja@asb9838n-a07:~/sfuhome/cmpt125/HelloWorld/src$ ls
HelloWorld.java

As you can see, each Eclipse project is a subdirectory in the workspace. The Java source file
is in the project subdirectory. Copy it to the Demo directory, then cd to the Demo directory.
skristja@asb9838n-a07:~/sfuhome/cmpt125/HelloWorld/src$ cp HelloWorld.java ~/sfuhome/Demo
skristja@asb9838n-a07:~/sfuhome/cmpt125/HelloWorld/src$ cd ~/sfuhome/Demo
skristja@asb9838n-a07:~/sfuhome/Demo$ ls

7 More accurately, file looks at the initial bytes of a file.
8 To take full advantage of the power of vi or emacs, and many other Unix command line programs, you will
want to learn regular expressions, a powerful way of expressing text patterns. ‘man 7 regex’ will get you the
man page for regular expressions. For a gentler introduction, search ‘regular expression tutorial’ in your
favourite search engine.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

13

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

another.txt HelloWorld.java

 If you have deleted the HelloWorld project, you can download HelloWorld.java from the
url http://www.cs.sfu.ca/CourseCentral/125/skristja/Demos/CmdLine/HelloWorld.java

Place it in the Demo directory.

To compile a Java program, run the Java compiler, javac:
skristja@asb9838n-a07:~/sfuhome/Demo$ ls
another.txt HelloWorld.java
skristja@asb9838n-a07:~/sfuhome/Demo$ javac HelloWorld.java
skristja@asb9838n-a07:~/sfuhome/Demo$ ls
another.txt HelloWorld.class HelloWorld.java
skristja@asb9838n-a07:~/sfuhome/Demo$ file HelloWorld.class
HelloWorld.class: compiled Java class data, version 50.0 (Java 1.6)

Running the compiler produces the file HelloWorld.class, which is Java bytecode. The
compiler requires that you specify the .java extension on the source file.

To run the program, you run the Java interpreter java with the class file as the parameter:
skristja@asb9838n-a07:~/sfuhome/Demo$ java HelloWorld
Hello, World!

Do not specify the .class extension! The Java interpreter will complain. (It tries to interpret the ‘.’ in
terms of Java’s notion of how derived class files should be stored in the file system.)

During the semester, you will be asked to submit your Java source files as your solution to an
assignment. As explained above, you can find the source files within the project directory in the
Eclipse workspace.

Scripts
One of the great strengths of using the Linux command line interface is that it provides you with
the ability to automate tasks. To do so, your can create bash scripts which will perform customized
functions for you. We will discuss that in an upcoming tutorial.

Check in with the TA
Show the TA your HelloWorld.java compiled and running from the command line before you go.

I Want More!
If this is already more command line Unix than you wanted to know, you can stop now. This
tutorial contains enough to allow you to do the work required for the course. If you’re looking for
more information, there’s lots of it out there. Consult the Unix documentation links at the bottom of
the Resources page on the course web site.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

14

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

B. Lab Exercises – To be completed by Students

Student are responsible for having the TA look at your work by end of
tutorial for full marks. Marks will be awarded for attendance and for making
progress on the Lab Exercises. The exercises do not need to be completed
by the end of the lab for full attendace/participation marks, but some
progress needs to be shown.

Students may work in teams of two and complete the exercises as a team.

1. Ensure you are running Eclipse in a Java Perspective

a. Check if the upper right corner shows a box with JAVA written in it.

b. If it does not say Java, you are in the wrong perspective. Follow the next
step to set your perspective to Java

c. Window → Open Perspective → Other… → Java

2. Create a new java project called Lab03Strings

3. File → New → [Select New Project] → [Project Name: Lab03Strings] → Finish

a. You will see a new Project called Lab03Strings in the Package Explorer.
Ensure that it is highlighted by selecting, if necessary, by clicking on it.

4. Create a new java class called Lab03Strings

a. File → New → [Select New Class] → [Class Name: Lab03Strings]

b. Be sure to select the box labeled “Public static void main” in order to create
your public method called main. This is where your program starts .

c. Click on Finish to create the Class file named Lab03Strings.java

d. This will create a new file in the edit window called Lab03Strings

5. Edit your main method to contain the following code inside the method body,
which will declare and initialize the strings s1, s2, and s3 then do some
println’s. Observe the results.
String s1 = "this is my first string 1,2,3,4 – bye";
String s2 = "** second! **";
String s3 = "And a third string!!!";
System.out.println(s1 + s2);
System.out.println(s1.toUpperCase() + "** ohhh! ");
System.out.println("Third String is \"" + s3 + "\"");
System.out.println("the length of s1 is: " + s1.length());

a. Run the code and observe:

i. s1.toUppercase() indicates that you are calling the method toUppercase
through the object string s1 (and you are not passing any parameters, as
there is an empty list of parameters, as indicated by (). What does the
method return?

ii. s1.length() indicates that you are calling the method length through the

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

15

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

object string s1 (and you are not passing any parameters, as there is an
empty list of parameters, as indicated by (). What does the method return?

6. Explore what happens when you assign one String to Another. Add the
following code at the end of your existing main program:
System.out.println("s1 is \"" + s1 + "\"");
System.out.println("s3 is \"" + s3 + "\"");

System.out.println("Assigning s3 = s1;");
s3 = s1;
System.out.println("s1 is \"" + s1 + "\"");
System.out.println("s3 is \"" + s3 + "\"");

System.out.println("Concatenating onto s1...");
s1 += " has changed";
System.out.println("s1 is \"" + s1 + "\"");
System.out.println("s3 is \"" + s3 + "\"");

Run the new code and observe which has changed. What is going on? Notice
that even though you set s3 to point to the same string object as s1, changes
to s1 are not reflected in s3. Why? Because Strings are immutable. Modifying
s1 creates a new String object instance and assigns a reference to it in s1.
String object reference s3 still points to the original String object.

7. Compiling with the Linux Command Line

Remote access to graphical user interfaces such as eclipse is not possible in
CSIL. It has been disabled. You can still login and test your code from home, but
you need to be able to do it via the Linux command line. Let’s practice creating
and running a program from the command line.

a. Start up a command line terminal session and go to your Cmpt125 directory
skristja@asb9838n-a07:~$ cd ~/sfuhome/Cmpt125

b. Create a new directory for lab03str and go there
skristja@asb9838n-a07:~/sfuhome/cmpt125$ mkdir lab03str
skristja@asb9838n-a07:~/sfuhome/cmpt125$ cd lab03str
skristja@asb9838n-a07:~/sfuhome/cmpt125/lab03str$

c. Copy your Lab03Strings.java file from your eclipse project folder to
here: (I will leave out the Linux prompt so the cp command fits on one line)

cp ~/sfuhome/cmpt125/Lab03String/src/Lab03Strings.java .

d. Now just like in the Lab Demo, compile and run your java program from the
command line and you should see the same output as before:

skristja@asb9838n-a07:~/sfuhome/cmpt125/lab03str$ javac Lab03Strings.java
skristja@asb9838n-a07:~/sfuhome/cmpt125/lab03str$ java Lab03Strings
this is my first string 1,2,3,4 b bye** second! **
THIS IS MY FIRST STRING 1,2,3,4 B BYE** ohhh!
Third String is "And a third string!!!"
the length of s1 is: 38

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

16

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

s1 is "this is my first string 1,2,3,4 b bye"
s3 is "And a third string!!!"
Assigning s3 = s1;
s1 is "this is my first string 1,2,3,4 b bye"
s3 is "this is my first string 1,2,3,4 b bye"
Concatenating onto s1...
s1 is "this is my first string 1,2,3,4 b bye has changed"
s3 is "this is my first string 1,2,3,4 b bye"
skristja@asb9838n-a07:~/sfuhome/cmpt125/lab03str$

e. You can edit files remotely using any command line editor such as vi, vim,
or emacs. Let’s try vim:

skristja@asb9838n-a07:~/sfuhome/cmpt125/lab03str$ vim Lab03Strings.java

f. You will enter an edit session with Lab03Strings.java in the main
window. To exit without changing anything, type the following three
characters exactly:

:q!

g. At this point, you have not made any changes to Lab03Strings.java,
but you have experienced the vim command line editor. When you enter
VIM, it expects that every character you type is a command that takes effect
immediately. One such command is the “:” character that moves your focus
immediately to the VIM command line at the bottom where it expects a
command. The command you typed was “q!” which means quit and discard
all unsaved changed. This is a good command to know!

h. Some other useful commands within vim allow you to append, insert, or
replace characters as you type. You will stay in this mode until you type the
<escape> key on the upper left of the keyboard. The most used such
commands include:
A – Append any typed characters to the end of a line
i - Enter Insert mode and insert characters as you type
R - Enter Replace mode and Replace characters with the ones being typed

Give it a try but remember to hit <escape> to get out of these modes. Then
type :q! to abort any changes that you have made.

i. Some commands take immediate affect but leave you in command mode so
you there is no need to hit <escape> to return to command mode. These
commands include:
x - delete current character
dw – delete to end of current word
dd – Delete current line
r - replace current character
. – repeat the last command

 For these commands, you can optionally enter a number before the
command, then the command will be repeated that many times. For
example, this command will delete the next 10 lines:

 10dd

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

17

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

j. You may want to cut and paste code. You can cut the code using the vim
dd command. Then move the cursor to where you want to paste the code,
and type the letter p to paste the code after the current line.

k. Command line editing is not for the faint of heart, but learning it is worth the
trouble. Until you have mastered vim, you can always use a graphical editor
when you are sitting at a CSIL computer or at your home PC, but your
choices are limited to command line text based editors like vim when you
login to CSIL remotely. Fortunately, VIM provides an extensive help menu.
To view the vim help menu, use the help command:
:help

l. Later, you can save your changes using the write and quit command: :wq
For now, discard all your changes by typing :q!
:q!

m. Make a copy of your original Lab03Strings.java program as the new
java file Lab03Strings2.java. Edit the new copy of your file using vim.
cp Lab03Strings.java Lab03Strings2.java
vim Lab03Strings2.java

n. Within the editor, the first change you need to make in order for this to
compile is to change the Class name to match the new file name. Within
VIM, move the cursor with the arrow keys until the cursor is immediately
after the lowercase s on the first line. Type the following three keystrokes to
append the character 2 to the class name. Remember that <escape>
represents hitting the <escape> key on the keyboard.
i2<escape>

 The first line should now look like:
public class Lab03Strings2 {

 Type the following three keystrokes to save your changes and exit vim:
:wq

o. Now compile the newly edited version of Lab03Strings2.java. The
output should match the original.
javac Lab03Strings2.java
java Lab03Strings2

p. If you want to use CSIL remotely from home, you will need to get familiar
with vim so you can edit your files remotely. You will use ssh to login
remotely and scp to transfer files to a CSIL machine. If you prefer, you can
always edit your files at home using a graphical editor and then use scp to
copy the new version back to your CSIL machine so you can test it. The
Course Webpage has links describing how to access CSIL remotely. We will
look into that in more detail in another lab.

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

18

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

8. Explore: the ‘for-loop’ in java

Java allows code to is executed a number of times by including it as the body of a
for-loop. The idea of a for loop in Java is similar to a for loop in Python and
other languages, but there are some syntactic and subtle differences.

a. Read section 4.8 of the text

b. Create a test java file called Lab03For.java using either Eclipse or the
command line based on the Stars program from Listing 4.12 of the text. If
using Eclipse, start by creating a new Java Project called Lab03For, then
the Class Lab03For. If using the Linux command line, you just need to copy
this text into a Lab03For.java file.

//**
// Lab03For.java
// From Stars.java by Java Foundations
//
// Demonstrates the use of nested for loops.
//**
public class Lab03For // Class Name changed from Text to Match filename
{
 //---
 // Prints a triangle shape using asterisk (star) characters.
 //---
 public static void main (String[] args)
 {
 final int MAX_ROWS = 10;

 for (int row = 1; row <= MAX_ROWS; row++)
 {
 for (int star = 1; star <= row; star++)
 System.out.print ("*");

 System.out.println();
 }
 }
}

c. Compile and run the Lab03For program to watch a Java for loop in action.
skristja@asb9838n-a07:~/sfuhome/cmpt125/lab03for$ javac Lab03For.java
skristja@asb9838n-a07:~/sfuhome/cmpt125/lab03for$ java Lab03For
*
**

d. Nesting for loops

What does the following code do? First, try to figure this out on paper and pencil

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

19

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

first. Then test it inside the main method in the Lab03For application from the
previous question. Insert this code in the main method body after the } following
the body of the existing for loop.

for (int i = 1; i<= 2; i++)
{
 for (int j = 1; j<=4; j=j+1)
 {
 System.out.println("i is:" + i + " and j is " + j);
 }
 System.out.println();
}

9. Explore the Scanner Class

a. The Scanner methods allow us to interact with the user. The Scanner
class has to be imported. A Scanner object needs to be created since we
need to instantiate a Scanner object instance to read from a specific input
stream such as System.out.

b. Create a new project called Lab03Scanner and create Lab03Scanner
Class with a public static void main() method as before.

c. Within the Java file, you will need to insert the following line to import the
java.util.Scanner package. Insert it after the block comment and before the
class definition.
import java.util.Scanner;

d. We are going to re-create the GasMileage example from Listing 2.9 of the
text. To compute mileage, in miles/gallon, one needs to take the number
miles travelled and divide by the number of gallons of gas used to get there.

e. To start, we will need an integer variable to represent the number of miles
that we have driven. Define an int at the start of your main method body
called miles.

f. Next we need to know how many gallons of gas our car used. This is not
likely to be a whole number so it should be represented as a floating point
number. Define a second variable called gallons which is a double.

g. Finally, the computed mileage will be a fractional value so also needs to be
stored in a double. Define it as the third local variable in your method.

h. In this program, we want to use the Scanner class to allow us to receive
input from the user. Declare a Scanner object called scan and instantiate it
by called the Scanner construction method and specifying that the input
stream is the System.in object:

 Scanner scan = new Scanner (System.in);

i. Now you use the scan object to request an int value from the user about
how far they travelled. Use the nextInt method to read the input stream
and return an integer value:

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

20

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

System.out.print ("Enter the number of miles: ");
 miles = scan.nextInt();

j. Try compiling and running your program. Does it behaive as expected?
Were you able to input the number of miles travelled? If running from the
command line, run the program and wait to be prompted for input. Simply
type an integer value like 100 and then hit the <enter> key. If you are
running this from Eclipse, you will need to click on the console window
before you start typing your input value and then hit <enter>.

k. You are not finished, your program needs to read in the amount of gas used
and compute the mileage. See if you can figure out how to do this on your
own. You will need to use Scanner’s nextDouble method at some point to
read in the number of gallons of gas used. Then compute the mileage in
variable mpg as follows:

 mpg = miles / gallons;

l. Finally, print out the computed mileage using:
 System.out.println ("Miles Per Gallon: " + mpg);

m. Compile and test your completed program. Does it work as expected? Test
it with various input values. What happens if you enter a decimal number
like 2.5 as the number of miles travelled? Can you make your code more
robust so that it checks for this and then re-requests that the user input
integer data only? What if the user enters non-numeric data like “Crash”?

10. READ: Brief introduction to static and non-static methods

We talked about this briefly in class regarding the difference between static and
non-static methods. Here is a little more detail. This will help you understand the
following exercises.

In Java, there are methods that are associated with an object when executed.
These are called non-static methods. For example, charAt(n) is a String
non-static method whose execution is associated with a specific String object
instance using the “dot” (.) notation. As an example, firstLetter will be the
first character (position 0) that the String wordVariable contains. The method
charAt is invoked through wordVariable

String wordVariable = "abcde";
char firstLetter = wordVariable.charAt(0); // non-static method invocation

There are also static methods. They can be thought of as “useful functions”,
collected together in some class or module. Static methods receive all the needed
information in the parameters. They are not associated with any object but instead
are associated with the class. For example, sqrt(n) is a static method in the
Math class to calculate the square root of the parameter n. One should include
the class name using the “dot” notation.

double result = Math.sqrt(25);

11. Explore the Math Class

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

21

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

a. Do some calculations using various math methods. Since its methods are
static, you do not create an object of the class Math to use the method but
instead you qualify the method with the class name using the dot notation.
See section 3.5 in the textbook.

b. Create a new project called Lab03Math with a Lab03Math Class

c. In the main method, you will re-create the Quadratic example from Listing
3.3 in the textbook to compute the roots of a Quadratic equation using
methods from the Math class. Start by including the following statements to
declare your three integer quadratic coefficients a, b and c at the start of the
main method body.
int a, b, c; // ax^2 + bx + c

d. Next, you need to have two doubles for storing the computed roots:
double root1, root2;

e. As with the Scanner exercise, instantiate a Scanner object and request the
input values from the user:

Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the coefficient of x squared: ");
 a = scan.nextInt();
 System.out.print ("Enter the coefficient of x: ");
 b = scan.nextInt();
 System.out.print ("Enter the constant: ");
 c = scan.nextInt();

f. To compute the discriminant, you need to compute b2 and subtract 4ac. The
static Math method pow can compute b2 or you could simply multiply b by
itself. Notice that the method is being called without an object reference.
That works because it is a static method.

 discriminant = Math.pow(b, 2) - (4 * a * c);
or

discriminant = (b * b) - (4 * a * c);

g. Do you recall how to compute the roots? You will need to compute the
square root of the discriminant. Use the Math.sqrt static method for that:

root1 = (-b + Math.sqrt(discriminant)) / (2 * a);
 root2 = (-b - Math.sqrt(discriminant)) / (2 * a);
 System.out.println ("Root #1: " + root1);
 System.out.println ("Root #2: " + root2);

h. Try to compile and test it. Does the compile fail? What is missing? Recall
that the Scanner Class is not part of java.lang so it needs to be imported.
Add an import statement before the Class definition as follows:
import java.util.Scanner;

i. Does the compiler complain about discriminant not being defined?
Remember that you are not using Python anymore, in Java you need to
declare all variables before you use them. Try to figure it out on your own
and make it work: it is good practice. Fix the code and test it to make sure it

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

22

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

runs over all reasonable values.

j. Here is an example output with a=1, b=0, c=-1:
skristja@asb9838n-a07:~/sfuhome/cmpt125/lab03$ java Lab03Math
Enter the coefficient of x squared: 1
Enter the coefficient of x: 0
Enter the constant: -1
Root #1: 1.0
Root #2: -1.0

12. Explore the Random Class

a. Create a new project called Lab03Random and create a new Class called
Lab03Random within it.

b. The Random Class is an example of a non-static interface. That means that
calls to its methods require a reference to an object instance. You will need
to construct a Random object instance since the methods are non-static.
Notice in particular the (non-static) method nextInt() taken from listing
3.2 of the text which generates a random integer from MIN_INT to
MAX_INT:

int num1;

num1 = generator.nextInt();

 System.out.println ("A random integer: " + num1);

c. In the above code fragment, generator is an instance of the Random
Class. It is an object which is responsible for initializing the random seed
when it is constucted, and for generating random numbers when one of its
methods, such as nextInt, is invoked. Before you can use the generator,
you will need to instantiate it:

Random generator = new Random();

d. Notice that before this will compile, you need to import the Random class to
be able to use its constructors and methods. You do so with the statement:
import java.util.Random;

e. Include the import statement before the class header

f. You can generate random numbers in a range from 0 to N by invoking
method nextInt with a range parameter. If you want a number from 0 to 9,
use the following:
num1 = generator.nextInt(10);

g. To generate a different range, you will need to do the math yourself. The
following generates random numbers in different ranges:

num1 = generator.nextInt(10); // From 0 to 9
 num1 = generator.nextInt(10) + 1; // From 1 to 10
 num1 = generator.nextInt(15) + 20; // From 20 to 34
 num1 = generator.nextInt(20) - 10; // From -10 to 9
 num2 = generator.nextFloat(); // Random float between 0 and 1

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

23

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

 num2 = generator.nextFloat() * 6; // 0.0 to 5.999999

h. Experiment with generating different random ranges and printing the results.
Retain each random range and println that you generate in your final version
so the markers can see your work. Compile and test your application. Run
the Lab03Random program several times to see how the numbers change
with each run.

i. Your final version of Lab03Random should be well commented and contain
as a minimum the following random ranges:

//**
// RandomNumbers.java Java Foundations
//
// Demonstrates the creation of pseudo-random numbers using the
// Random class.
//**
import java.util.Random;
public class RandomNumbers
{
 //---
 // Generates random numbers in various ranges.
 //---
 public static void main (String[] args)
 {
 Random generator = new Random();
 int num1;
 float num2;

 num1 = generator.nextInt();
 System.out.println ("A random integer: " + num1);

 num1 = generator.nextInt(10);
 System.out.println ("From 0 to 9: " + num1);

 num1 = generator.nextInt(10) + 1;
 System.out.println ("From 1 to 10: " + num1);

 num1 = generator.nextInt(15) + 20;
 System.out.println ("From 20 to 34: " + num1);

 num1 = generator.nextInt(20) - 10;
 System.out.println ("From -10 to 9: " + num1);

 num2 = generator.nextFloat();
 System.out.println ("A random float (between 0-1): " + num2);

 num2 = generator.nextFloat() * 6; // 0.0 to 5.999999
 num1 = (int)num2 + 1;
 System.out.println ("From 1 to 6: " + num1);
 }
}

Cmpt 125/126 Lab Exercises wk03: Linux Command Line Sept 16th 2013

24

Instructor: Scott Kristjanson Wk03

TAs: Yu Yang, Megan O’Connor

C. Lab Exercise Submission – To be completed by Students

Student are responsible for submitting the requested work files by the
stated deadline for full marks. Since Lab Exercise solutions will be
discussed in class following the submission deadline, late submissions will
NOT be accepted. It is the student’s responsibility to submit on time.

Students may work in teams of two and submit a single set of files on
behalf of the group in Canvas.

1. You must submit your final version of the following files before the
deadline. Students must ensure that all submitted code compiles and is
properly commented and formatted for readability:

 Lab03Strings.java

 Lab03Scanner.java

 Lab03Math.java

 Lab03Random.java

2. For students working in the lab with a partner, only one submission is
required for the group of two students

3. Files are to be submitted into CourSys under Lab03. Use the Manage
Groups menu to create a group name unique to you and which includes
the week number. See the course website for submission instructions at
http://blogs.sfu.ca/courses/fall2013/cmpt125/labs/submitting/

