
Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

1

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

Assignment 4 – Recursive and Sorting Methods

Required Reading
Java Foundations – Chapter 13 – Linked Structures

 Chapter 17 – Recursion

 Chapter 18 – Searching and Sorting

 Chapter 19 – Trees

Instructions – PLEASE READ (notice bold and underlined phrases)

This assignment has four parts:
A. Written – Answer the questions, submit in Lab Tutorial Nov 25th

B. Written – Answer the questions, submit to CourSys by Dec 2nd

C. Programming – Code must be well commented, compile/test, then submit

D. Submission – Submit specified assignment files by deadline

1. This assignment must be done individually. You may discuss ideas with
others, but you must answer all questions and write all the code within
your group. Plagiarism by students will result penalties that may include
receiving zero for the assignment.

2. All Files Submitted for Programming Assignments must include JavaDoc
block comments for the Class and each Method. Comments for the Class
must include the name of the Java Class plus a short description of what
the Class does, must also include the Student’s name and Student
Number. Each Method should describe what the Method does, its
parameters, and return values using JavaDoc compatible comments.

3. Submission deadline: 11:59pm Monday Dec 2nd. You should be able to
complete the work if you have completed the required reading for the
assignment. More material is available in the Class Slides. While you
have seen most of what is discussed here, some topics discussed in this
assignment and needed for your submission may not be seen until
another class! You may submit before the deadline, if you so prefer. You
may resubmit again later without penalty provided you resubmit before
the deadline.

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

2

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

A. Written Assignment – Submit at Lab Tutorial on Nov 25th
 – ReSubmit to CourSys by Dec 2nd

Section A does not require any programming. Write your answers neatly
in a document such as a Word Document or handwritten on a piece of
paper. Keep each answer brief with one or two sentences being sufficient
in most cases. Write the answers in your own words.

Your document must include your name, student number, Course Name,
Assignment Number, and Date along with your answers to the following
questions. Use Courier font and double-space in your write up. Image
files of handwritten work are not acceptable except for UML and Data
Flow Diagrams.

1. Chapter 17 – Recursion 5 Marks

(a) What is Recursion?

(b) What is Infinite Recursion?

(c) When is a base case needed for Recursive Programming?

(d) Is Recursion necessary?

(e) Given the added overhead of Recursion, when is it a good idea?

2. Chapter 18 – Searching and Sorting 10 Marks

(a) For linear searching: what is the best case, expected case, and worst
case search time with respect to N, the number of items to search
through?

(b) For logarithmic search: what is the best case, expected case, and
worst case search time with respect to N, the number of items to
search through?

(c) When would a linear search be preferable to a logarithmic search?

(d) Which searching method requires that the list be sorted?

(e) When would a sequential sort be preferable to a recursive one?

(f) The Selection Sort algorithm sorts using what technique?

(g) The Bubble Sort algorithm sorts using what technique?

(h) Using Big-O notation, how quickly does Bubble Sort run for N items.

(i) The Quick Sort algorithm sorts using what technique?

(j) Using Big-O notation, how quickly does Quick Sort run for N items.

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

3

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

3. Chapter 19 – Trees 5 Marks

(a) What is a Tree?

(b) What is the root of a Tree?

(c) What is a leaf of a Tree?

(d) Define the height of a tree?

(e) Given a tree with Height N, how many comparison steps does it take
to search for a specified element within the tree?

4. UML Diagrams 20 Marks

Create a UML Diagram of the TicTacToe game from Assignment 3. Your
UML diagram must include all class definitions and public methods and
public or protected class variables. You do not need to include private
methods or members in your diagram. Try to organize your diagram
show that the important high level details all fit on the first page. Simplify
as required so that it does. If you choose to hand draw your diagram,
then you must scan in your diagram into a JPEG file and include the
picture in your write-up when you submit to CourSys before the final due
date.

Base your diagram on the solution provided on the Class Website for
question C5. As a reminder, the following java files each define a Class
that must be represented in your UML diagram:

 TicTacToe.java - The main method for playing the game
 Board.java - Records the current state of play on the board
 Move.java - Move object used for creating a new move
 Player.java - Abstract Class defining Player child class method
 PlayerType.java - Defines playerTypeNames and createPlayer
 HumanPlayer.java - The Human player class
 RandomPlayer.java - The Random Computer player class
 SmarterPlayer.java - The Smarter Computer player class

5. Submission Instructions for Part A

You must have these questions answered and ready to hand in at the
start of your Lab Tutorial on Nov 25th. They will be marked and handed
back to you during the Tutorial.

You must submit your corrected answers to Part A into CourSys by the
final due date as a Word or PDF document called A4aWriteUp.doc,
A4aWriteUp.docx, or A4aWriteUp.pdf. You will also hand in a hardcopy of
Part A (submitted separately from part B) into the CMPT125 Assignment
box in CSIL by 11:59pm on the final due date as described in Part D.

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

4

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

B. Written Assignment – Submit in CSIL Box and CourSys

Students may discuss the problems with fellow students, but students
MUST complete the work on their own and the submitted answers must
be your own work.

Section B does not require any programming. Write your answers neatly
in a document such as a Word Document that will be submitted to
CourSys as part of the assignment. Your document must be called
a4bWriteup.doc, a4bWriteup.docx, or a4bWriteup.pdf and must include
your name, student number, Course Name, Assignment Number, and
Date along with your answers to the following questions. Use Courier
font and double-space in your write up. Image files of handwritten work is
not acceptable except for the Data Flow Diagram.

1. Data Flow Diagrams 20 Marks

Create a Dataflow Diagram of the TicTacToe game. Your diagram must
include all defined classes, and all public methods invocations between
classes. Label the arcs which go into a method with the names of the
method's formal parameters, and label the arcs represent return values
from a method with the class of that return value. Your top-level diagram
should fit on one page.

Base your diagram on the solution provided on the Class Website for
question C5. As a reminder, the following java files each define a Class
that must be represented in your Dataflow diagram:

 TicTacToe.java - The main method for playing the game
 Board.java - Records the current state of play on the board
 Move.java - Move object used for creating a new move
 Player.java - Abstract Class defining Player child class method
 PlayerType.java - Defines playerTypeNames and createPlayer
 HumanPlayer.java - The Human player class
 RandomPlayer.java - The Random Computer player class
 SmarterPlayer.java - The Smarter Computer player class

If you choose to hand draw your diagram, you must scan your diagram into
a JPEG file and include the scanned picture in your write-up when you
submit to CourSys.

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

5

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

2. Analysis of Algorithms

Using Big-O notation, analyze the following code fragments and specify
what their run-time complexity are. In your write-up, label loops and loop
bodies that are included in your calculation with the appropriate Big-O
notation. Then show your calculations to compute the overall run-time
cost using Big-O notation. Your Big-O notation should be specified in
terms of N which is the length of the input array data.

Reminder: Analyzing the run-time cost of an algorithm first requires that
you estimate the cost of the method body using Big-O notation, and then
multiply that by the number of times the loop (or loops) is executed with
respect to the size of the array N.

(a) Sorting Numbers 10 Marks

One way to sort an array of numbers is to scan through the array looking
for pairs of numbers that are in the wrong order and swapping them.
Once call pairs have been compared, and possibly swapped, then the
entire array is sorted. Using Big-O notation, analyze the following sort
algorithm.

// Sort data[] array in order from smallest to largest
public static void sort(int[] data)
{
 int N = data.length;
 int position;
 int scan;
 int temp;

 for (position=data.length-1; position>=0; position--)
 for (scan = 0; scan <= position - 1; scan++)
 if (data[scan] > data[scan+1]) {
 /* Elements are in wrong order, swap them */
 temp = data[scan];
 data[scan] = data[scan+1];
 data[scan+1] = temp;
 }
 }

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

6

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

(b) Searching for a Target in an unsorted Array of Numbers 10 Marks

Searching involves looking for some target in a collection of elements
and returning true if the target is found, and false otherwise. When we
have an unsorted array of objects, each element must be compared with
the target until we find the target element, or until we hit the end of the
array.

Examine the following code fragment for searching for a target in an
unsorted array of integers. Analyze the algorithm to determine its run-
time cost using Big-O notation.

public static boolean
 slowSearch(int[] data, int min, int max, int target)
 {
 int N = data.length;
 boolean found = false;

 for(int i=min; !found && i<=max; i++)
 if (data[i] == target)
 found = true;

 return found;
 }

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

7

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

(c) Searching for a Target in a Sorted Array of Numbers 10 Marks

When we have a sorted array, we can search the list much faster by using
recursion. We start the search by calling search with an int[] array
called data, and setting min=0 and max=data.length-1.

After comparing our target value to the int at the midpoint in the array,
we can rule out one half of the array based on whether our target is
smaller or larger than the value stored in data[midpoint].

The algorithm performs a recursive step to search for the target in the
remaining half of the array. Each recursive step involves searching
through a list wit half the number of elements as the previous step.

The recursion stops when the target is found, or there are no further
elements to check between min and max. This occurs when min becomes
larger than max.

public static boolean
 fastSearch(int[] data, int min, int max, int target)
{
 int N = data.length;
 boolean found = false;
 int midpoint = (min+max)/2; // determine the midpoint

 if (data[midpoint] == target)
 found = true;
 else
 if (data[midpoint] > target)
 {
 if (min <= midpoint - 1)
 // Recursion on the right half of the array
 found = fastSearch(data, min, midpoint-1, target);
 }
 else
 if (midpoint + 1 <= max)
 // Recursion on the left half of the array
 found = fastSearch(data, midpoint+1, max, target);

 return found;
}

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

8

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

C. Programming – To be completed by Students Individually

You may not use the ArrayList class for this assignment.

1. Implementing Stacks with Linked Lists 30 Marks

Section 13.6 of the Textbook describes how to implement a Stack using
Linked Objects. Complete the implementation of the LinkedStack<T>
class by implementing each of the methods: push, pop, peek, size,
isEmpty, and toString methods.

As a starting point, use the following files provided on the Assignment
page for question C1:

 LinkedStack.java
 LinearNode.java
 StackADT.java
 EmptyCollectionException.java
 StudentCodingError.java

For this question, you will only modify file LinkedStack.java. The other
files are for your convenience and should not be modified.

To get started, create a new project in Eclipse with the name of your
choice. Right click on the project and select: New->Package. Create a
new package called jsjf. This will appear under your src directory as its
own package sub-directory.

Right click on the jsjf package, and select New -> Class and create a
new class called LinkedStack. Copy the contents of LinkedStack.java
from the Assignment page to the LinkedStack.java in the eclipse
editor using copy/paste. Repeat this for the LinearNode Class.

Right click on the jsjf package again, and select New -> Interface.
Create an Interface called StackADT and copy/paste the contents of file
StackADT.java from the assignment page into your class definition.

Create a second package called jsjf.exceptions by right clicking on the
project, and select New -> Package and specifying that name. This will
create a new package in the Project Explorer window. Right click on that
package and create a new class called EmptyCollectionException.
Copy/Paste the contents of EmptyCollectionException.java into that
class. Repeat these steps to create class StudentCodingError.

You will be implementing your methods in LinkedStack.java. It is the only
file that you may change and submit. You may use the implementations
for push and pop provided in the text, or write your own. The
implementation for the other methods must be your own.

Once you have implemented all methods in your LinkedStack<T> class
and there are no compiler errors, you will need to test it using the postfix

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

9

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

Calculator test program. Create two new classes for the following two
files:

 PostfixCalculator.java
 PostfixEvaluator.java

Run your program, your output should match the example test run below.
Note that user input is marked in blue and must be typed in by the
student after running the program.

Example test run:
Invoking test of LinkedStack implementation
LinkedStack Test Passed! Congratulations!
Running the calculator now...

Enter a valid post-fix expression one token at a time
with a space between each token. (ex: 5 4 + 3 2 1 - + *)

Each postfix expression to evaluate: 5 4 + 3 2 1 - + *
That expression equals 36

Evaluate another expression [Y/N]? n
Exiting calculator

2. Basic CodingBat Exercises 30 Marks

Complete the follow sets of exercises in CodingBat.com. If you have not
already done so, register on CodingBat using your SFU email account,
and set your preferences for Teacher Share to allow skristja@sfu.ca to
view your progress. Your email account will be used to track your
progress on CodingBat.

To submit, paste each solution into its own java class file. For example,
paste the solution to left2 into file left2.java. Create a zip file called
a4c2.zip containing all your solutions and submit to CourSys.

Earn a 5-Star badge on CodingBat by completing the following 15
problems from the 5 basic categories: (2 Marks each)
(a) String-1: left2 firstHalf seeColor
(b) Logic-1: cigarParty caughtSpeeding alarmClock
(c) Array-1: firstLast6 rotateLeft3 make2
(d) String-2: doubleChar countCode catDog
(e) Array-2: countEvens sum13 fizzArray

3. Recursion CodingBat Exercises 30 Marks

Gain practice with writing Recursive methods by completing the
following recursive problems from CodingBat. (5 marks each)
(a) Recursion-1: factorial fibonacci bunnyEars bunnyEars2 array11
(b) Recursion-2: groupSum

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

10

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

4. Sorting 20 Marks

Write an application that reads a single line of input from the user
containing at least one integer and possibly many more. You may reuse
and adapt your input validation loop from Assignment 3 for this if you
chose. Use your LinkedStack data structure to push all the integers onto
the stack as your scan them in using your scanner input parsing loop. If
any of the input values are non-ints, reject all the input and re-prompt the
user to enter one or more integers.

Your program should count the number of ints that it pushed onto the
stack. Once your program has successfully stacked all the valid int
values, use this count to determine how many were entered by the user.
Allocate an int[] array of that size, and fill the array with the int values
from the stack. Recall that stacks return data elements in a last-in-first-
out order so the first int retrieved from the stack.pop() method call should
be stored in the last element in the array. The last item to be removed
from the stack should be stored in the array element with index value of
zero.

Your program must store the integers in an int[] array of the appropriate
length and then call your sort routine to sort them. Write a public method
within your class called myIntSort with the following signature:

public static void myIntSort(int[] nums) {
}

Method myIntSort modifies the nums array such that integers are sorted
from smallest to largest. So {1, 10, -10, 2} yields {-10, 1, 2, 10}. You may
choose to implement any of the following sort routines: Insertion Sort,
Selection Sort, Bubble Sort, QuickSort, or MergeSort. The routines are
described in the text in Chapter 18. You must write the code yourself
however, you may use the text examples as a guide. Add comments.
There is a 5 mark bonus for implementing either QuickSort or MergeSort.

Main should display a count of how many integers where entered, then
display the integers in the original order, followed by displaying them in
sorted order from smallest to largest.

Your Java Class file should be called MyIntSort.java.

Example test run:
Enter one or more integers: 23 10 -5 Fred 99 1 0 3
Sorry but Fred is not an int! Please try again!
Enter one or more integers: 23 10 -5 123 99 1 0 3
Number of integers: 8
myStack: [3 0 1 99 123 -5 10 23]
myArray: [23 10 -5 123 99 1 0 3]
Sorted : [-5 0 1 3 10 23 99 123]

Cmpt 125/126

Assignment 4: Recursive and Sorting Methods
Updated Nov 30th

Nov 19th 2013
Due: Dec 2nd 11:59pm

11

Instructor: Scott Kristjanson Wk12

TAs: Yu Yang, Megan O’Connor

D. Submission – To be completed by Students Individually

Due date: Monday Dec 2nd 11:59pm (Last Day of Class)

Students are responsible for submitting the requested work files by the
stated deadline for full marks. It is the student’s responsibility to submit on
time. Submissions via email will NOT be accepted.

You must submit your final version of the following files before the
deadline. All written answers for Parts A and Parts B must be included in
separate Word or PDF documents which are double spaced and include the
Student’s Name and Student Number at the top, along with the Course
Number and Assignment Number. Students must ensure that all submitted
code compiles and is properly commented and formatted for readability.

Submit Separate Hardcopies for Parts A and for B into the CMPT125
Assignment Box in CSIL:
Part A : a4aWriteup
Part B : a4bWriteup

Submit into CourSys:
Part A : a4aWriteup.doc or a4aWriteup.pdf
Part B : a4bWriteup.doc or a4bWriteup.pdf
Question C1 : LinkedStack.java
Question C2 : a4c2.zip
Question C3 : a4c3.zip
Question C4 : MyIntSort.java

Files are to be submitted into CourSys under assignment A4 as individuals.
No group name is required and none should one be used. See the course
website for submission instructions at:

http://blogs.sfu.ca/courses/fall2013/cmpt125/labs/submitting/

