Finite State Machines

Formal LanguagesFinite State Machines

Formal Languages

Natural Languages

- A natural language is used for human communication
 - Spoken, written or gestured
 - e.g. English, French, Mandarin, Klingon
- There are rules
 - Valid characters
 - Valid words
 - Valid sentences
 - Acceptable idioms

The human brain is pretty good at coping with language errors

Computers, considerably less so

Formal Languages

- A formal language is used to distinguish precisely what is allowed from what is not
 - Expressed mathematically, often using recursion
 - e.g. valid postfix expressions, valid C++
- Similarly to natural languages there are
 - Alphabets
 - Words
 - Grammars
 - But no idioms

Alphabets and Words

• An *alphabet* is a finite collection of symbols

- e.g. $\Sigma = \{a, b, c, ..., x, y, z\} letters of the alphabet$
- e.g. Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} base ten digits
- e.g. $\Sigma = \{0, 1\} \text{binary digits}$
- A *word* is a finite sequence of alphabet symbols
 - Symbols may be repeated
 - e.g. baa, 100, wool, sheep
 - Order matters
 - e.g. listen, silent
 - The word of length zero is special

Languages

- A (formal) language is a set of words
 - Can be finite
 - e.g. L = {all valid English words}
 - Or infinite
 - e.g. L = {all valid decimal numbers}
 - But the words themselves are of finite length
- Rules specify which words are valid or invalid
 - The rules that describe a language are referred to as a grammar

Specifying a Formal Language

- Like a natural language, use a grammar
 - Describe the symbols allowed and the order in which they should appear
 - Usually specified recursively
- Examples
 - A valid sentence is a noun phrase followed by a verb phrase followed by a subordinate clause
 - A subordinate clause may be composed of the symbol where followed by a valid sentence
 - A valid postfix expression is either a single number or two valid postfix expressions followed by an operator

Representing a Grammar

- A grammar can be represented using *production rules*
 - For postfix

- $E \rightarrow number$
- $E \rightarrow EE$ operator
- A postfix expression is either a number or two postfix expressions followed by an operator
- We can write algorithms to take input, break it into its components and determine if it is syntactically correct
 - Known as a *parser*
 - Parsing is the process of analyzing a string of symbols that conform to a grammar

Modelling Computation

- Use a *finite state machine* to model the rules of a language
 FSM rules
 - Finite number of states
 - FSM reads one character at a time
 - Next state is determined by looking at the current state and the next input character, and nothing else
 - Each state has at most one transition on any given character
 - Previously read characters may not be read again
 - One state is identified as the *start* state
 - One or more states are identified as *final* states
 - If the last state is a final state accept
 - If the last state is not a final state reject

Finite State Machines

Dead States

- In this presentation
 - Final states outlined in green
 - Start state pointed to by a green arrow
- The yellow state is a dead state
 - Dead states are not final states
 - Dead states cannot be transitioned from
 - They only transition to themselves
 - Dead states are usually not shown
 - In addition transitions that are not shown go to a dead state

Using the Dead State

- Build an FSM that accepts all words of length 3
 - Σ = {a, b}
- Build an FSM that accepts all decimal integers
 - Disallow leading zeros
 - $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Dead state not shown
 - Any transition from o final state

FSM Implementation

- Implement in a simple loop
- Algorithm:

```
state = start
```

- while there is still input
 - c = next input symbol
 - if transition(state, c) exists

state = transition(state, c)

else

```
reject (or state = dead state)
end while
if state is a final state accept
else reject
```


Implement transitions with a **table** or a case statement

_{state} / ^c	Ο	1-9
start	begin o	begin 1-9
begin o	dead	dead
begin 1-9	begin 1-9	begin 1-9

Augmenting FSMs

- FSMs can be augmented with other information
- Actions
 - Transitions to a state may be associated with an action
 - Such as the calculation of a value
 - Shown after the input character on the transition arc
 - Typically separated from the input by a /
- Output
 - Transitions may also be associated with output
 - Again, shown after the input character(s) associated with the transition

FSM Actions

- Perform an action during a transition
 - Place actions on transition, following a slash
- What might be a useful action in the FSM to accept integers?
 - The value of the integer
 - A1: val = c
 - A2: val = 10 * val + c

FSM Output

- Build an FSM that performs block reduction
 - That reports o for each sequence of os
 - And 1 for each sequence of 1s
- Example
 - 111000010011100011 goes to
 - 1010101
- Note that ɛ represents the empty string

FSM Summary

- FSMs are a mathematical model of computation
 - The behavior of many devices can be modeled by a state machine
 - Vending machines
 - Traffic lights
 - •
- FSMs can be used to model systems
 - In engineering
 - And computing science
 - To model the behavior of an application