Finite State Machines

Classes

Formal Languages
Finite State Machines

Formal Languages

Natural Languages

A natural language is used for human
communication

Spoken, written or gestured
e.g. English, French, Mandarin, Klingon
There are rules

Valid Cha racters The human brain is pretty good

at coping with language errors

Valid words

Valid sentences Computers, considerably less so

Acceptable idioms

Formal Languages

A formal language is used to distinguish
precisely what is allowed from what is not

Expressed mathematically, often using recursion
e.g. valid postfix expressions, valid C++
Similarly to natural languages there are

Alphabets
Words
Grammars
But no idioms

Alphabets and Words

An alphabet is a finite collection of symbols
e.g.2={a, b, ¢ ..., Xy, z} —letters of the alphabet
e.qg.2=10,1, 23,45, 6,7 8,9} —base ten digits
e.g. X = {o, 1} — binary digits

A word is a finite sequence of alphabet symbols
Symbols may be repeated

e.g. baa, 100, wool, sheep
Order matters

e.g. listen, silent

The word of length zero is special

Languages

A (formal) language is a set of words

Can be finite
e.g. L = {all valid English words}
Or infinite
e.g. L ={all valid decimal numbers}
But the words themselves are of finite length
Rules specify which words are valid or invalid

The rules that describe a language are referred to
as a grammar

Specifying a Formal Language

Like a natural language, use a grammar

Describe the symbols allowed and the order in which they
should appear
Usually specified recursively
Examples

A valid sentence is a noun phrase followed by a verb
phrase followed by a subordinate clause

A subordinate clause may be composed of the symbol where
followed by a valid sentence

A valid postfix expression is either a single number or two
valid postfix expressions followed by an operator

Representing a Grammar

A grammar can be represented using production rules

For postfix
E — number
E — EE operator

A postfix expression is either a number or two postfix expressions
followed by an operator

We can write algorithms to take input, break it into its
components and determine if it is syntactically correct
Known as a parser

Parsing is the process of analyzing a string of symbols that
conform to a grammar

Modelling Computation

Use a finite state machine to model the rules of a language
FSM rules

Finite number of states
FSM reads one character at a time

Next state is determined by looking at the current state and the next
input character, and nothing else
Each state has at most one transition on any given character
Previously read characters may not be read again 5 = (a,b)

One state is identified as the start state — b
One or more states are identified as final states]
If the last state is a final state — accept

If the last state is not a final state — reject b

Finite State Machines

Dead States

In this presentation > = {a,b}
Final states outlined in green

Start state pointed to by a green
arrow a b

The yellow state is a dead state]
a,
Dead states are not final states a,b D

Dead states cannot be transitioned
from
They only transition to themselves
Dead states are usually not shown b

In addition transitions that are not
shown go to a dead state D a,b

Using the Dead State

Build an FSM that accepts

all words of length 3 :
> = {a, b} 0

Build an FSM that accepts b@<—b

all decimal integers

Disallow leading zeros /T\ oy _De 9
Z = {0I1I2I3I4ISI6I7I8I9} 0
Dead state not shown

Any transition from o final
state

FSM Implementation

Implement in a simple loop 1-9 /' ‘D@_g
Algorithm:

state = start
while there is still input

c = next input symbol
Implement transitions with a

if transition(state, c) exists
table or a case statement

state = transition(state, c)
else

(or state = dead state)
begino begin 1-9

dead dead

end while

if state is a final state

else begin1-9 begin 1-9

Augmenting FSMs

FSMs can be augmented with other information
Actions
Transitions to a state may be associated with an action
Such as the calculation of a value

Shown after the input character on the transition arc
Typically separated from the input by a/

Output
Transitions may also be associated with output

Again, shown after the input character(s) associated with
the transition

FSM Actions

Perform an action during
a transition

Place actions on transition,
following a slash 9 0oon

What might be a useful
action in the FSM to
accept integers?

The value of the integer

A1:val=c

0/A1

A2:val=10 *val +c

FSM Output

Build an FSM that performs
block reduction

That reports o for each

sequence of os)
And 1 for each sequence of 1s o)
Example E/J@/e
goes to 2
N

Note that € represents the
empty string

FSM Summary

FSMs are a mathematical model of computation

The behavior of many devices can be modeled by a
state machine

Vending machines
Traffic lights

FSMs can be used to model systems
In engineering

And computing science
To model the behavior of an application

