Finite State Machines
Classes

- Formal Languages
- Finite State Machines
Formal Languages
A natural language is used for human communication

- Spoken, written or gestured
 - e.g. English, French, Mandarin, Klingon

There are rules

- Valid characters
- Valid words
- Valid sentences
- Acceptable idioms

The human brain is pretty good at coping with language errors

Computers, considerably less so
A formal language is used to distinguish precisely what is allowed from what is not.

- Expressed mathematically, often using recursion
 - e.g. valid postfix expressions, valid C++

Similarly to natural languages there are:

- Alphabets
- Words
- Grammars
- But no idioms
An *alphabet* is a finite collection of symbols

- e.g. $\Sigma = \{a, b, c, \ldots, x, y, z\}$ – letters of the alphabet
- e.g. $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ – base ten digits
- e.g. $\Sigma = \{0, 1\}$ – binary digits

A *word* is a finite sequence of alphabet symbols

- Symbols may be repeated
 - e.g. baa, 100, wool, sheep
- Order matters
 - e.g. listen, silent
- The word of length zero is special
A (formal) language is a set of words

- Can be finite
 - e.g. \(L = \{ \text{all valid English words} \} \)
- Or infinite
 - e.g. \(L = \{ \text{all valid decimal numbers} \} \)
- But the words themselves are of finite length

Rules specify which words are valid or invalid

- The rules that describe a language are referred to as a grammar
Like a natural language, use a grammar

- Describe the symbols allowed and the order in which they should appear
 - Usually specified recursively

Examples

- A valid sentence is a noun phrase followed by a verb phrase followed by a subordinate clause
 - A subordinate clause may be composed of the symbol *where* followed by a valid sentence

- A valid postfix expression is either a single number or two valid postfix expressions followed by an operator
A grammar can be represented using *production rules*

- For postfix
 - $E \rightarrow \text{number}$
 - $E \rightarrow EE \text{ operator}$
 - A postfix expression is either a number or two postfix expressions followed by an operator

- We can write algorithms to take input, break it into its components and determine if it is syntactically correct
 - Known as a *parser*
 - Parsing is the process of analyzing a string of symbols that conform to a grammar
Modelling Computation

- Use a *finite state machine* to model the rules of a language
- FSM rules
 - Finite number of states
 - FSM reads one character at a time
 - Next state is determined by looking at the current state and the next input character, and nothing else
 - Each state has at most one transition on any given character
 - Previously read characters may not be read again
 - One state is identified as the *start* state
 - One or more states are identified as *final* states
 - If the last state is a final state – *accept*
 - If the last state is not a final state – *reject*
Finite State Machines
Dead States

- In this presentation
 - Final states outlined in green
 - Start state pointed to by a green arrow
- The yellow state is a dead state
 - Dead states are not final states
 - Dead states cannot be transitioned from
 - They only transition to themselves
 - Dead states are usually not shown
 - In addition transitions that are not shown go to a dead state
- Build an FSM that accepts all words of length 3
 - $\Sigma = \{a, b\}$
- Build an FSM that accepts all decimal integers
 - Disallow leading zeros
 - $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 - Dead state not shown
 - Any transition from 0 final state
Implement in a simple loop

Algorithm:

```
state = start
while there is still input
    c = next input symbol
    if transition(state, c) exists
        state = transition(state, c)
    else
        reject (or state = dead state)
end while
if state is a final state accept
else reject
```

Implement transitions with a table or a case statement

<table>
<thead>
<tr>
<th>state / c</th>
<th>0</th>
<th>1-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>begin 0</td>
<td>begin 1-9</td>
</tr>
<tr>
<td>begin 0</td>
<td>dead</td>
<td>dead</td>
</tr>
<tr>
<td>begin 1-9</td>
<td>begin 1-9</td>
<td>begin 1-9</td>
</tr>
</tbody>
</table>
Augmenting FSMs

- FSMs can be augmented with other information
- Actions
 - Transitions to a state may be associated with an action
 - Such as the calculation of a value
 - Shown after the input character on the transition arc
 - Typically separated from the input by a /
- Output
 - Transitions may also be associated with output
 - Again, shown after the input character(s) associated with the transition
FSM Actions

- Perform an action during a transition
 - Place actions on transition, following a slash
- What might be a useful action in the FSM to accept integers?
 - The value of the integer
 - A1: val = c
 - A2: val = 10 * val + c
Build an FSM that performs block reduction
 - That reports 0 for each sequence of 0s
 - And 1 for each sequence of 1s
Example
 - 111000010011100011 goes to
 - 1010101
Note that ϵ represents the empty string
FSM Summary

- FSMs are a mathematical model of computation
 - The behavior of many devices can be modeled by a state machine
 - Vending machines
 - Traffic lights
 - ...
- FSMs can be used to model systems
 - In engineering
 - And computing science
 - To model the behavior of an application