

 Formal Languages
 Finite State Machines

 A natural language is used for human
communication

 Spoken, written or gestured

▪ e.g. English, French, Mandarin, Klingon

 There are rules

 Valid characters

 Valid words

 Valid sentences

 Acceptable idioms

The human brain is pretty good
at coping with language errors

Computers, considerably less so

 A formal language is used to distinguish
precisely what is allowed from what is not

 Expressed mathematically, often using recursion

▪ e.g. valid postfix expressions, valid C++

 Similarly to natural languages there are

 Alphabets

 Words

 Grammars

 But no idioms Noam Chomsky – grammar expert

 An alphabet is a finite collection of symbols

 e.g.  = {a, b, c, …, x, y, z} – letters of the alphabet

 e.g.  = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} – base ten digits

 e.g.  = {0, 1} – binary digits

 A word is a finite sequence of alphabet symbols

 Symbols may be repeated
▪ e.g. baa, 100, wool, sheep

 Order matters
▪ e.g. listen, silent

 The word of length zero is special

 A (formal) language is a set of words

 Can be finite

▪ e.g. L = {all valid English words}

 Or infinite

▪ e.g. L = {all valid decimal numbers}

 But the words themselves are of finite length

 Rules specify which words are valid or invalid

 The rules that describe a language are referred to
as a grammar

 Like a natural language, use a grammar

 Describe the symbols allowed and the order in which they
should appear
▪ Usually specified recursively

 Examples

 A valid sentence is a noun phrase followed by a verb
phrase followed by a subordinate clause
▪ A subordinate clause may be composed of the symbol where

followed by a valid sentence

 A valid postfix expression is either a single number or two
valid postfix expressions followed by an operator

 A grammar can be represented using production rules

 For postfix

▪ E  number

▪ E  EE operator

▪ A postfix expression is either a number or two postfix expressions
followed by an operator

 We can write algorithms to take input, break it into its
components and determine if it is syntactically correct

 Known as a parser

 Parsing is the process of analyzing a string of symbols that
conform to a grammar

 Use a finite state machine to model the rules of a language
 FSM rules

 Finite number of states

▪ FSM reads one character at a time

▪ Next state is determined by looking at the current state and the next
input character, and nothing else

▪ Each state has at most one transition on any given character

▪ Previously read characters may not be read again

 One state is identified as the start state

▪ One or more states are identified as final states

▪ If the last state is a final state – accept

▪ If the last state is not a final state – reject

 = {a,b}

aa

b

b

even
a's

odd
a's

final
state

 = {a,b}

ba

a,ba,b

 In this presentation

 Final states outlined in green

 Start state pointed to by a green
arrow

 The yellow state is a dead state

 Dead states are not final states

 Dead states cannot be transitioned
from

▪ They only transition to themselves

 Dead states are usually not shown

▪ In addition transitions that are not
shown go to a dead state

b

a,b

the same FSM

begins
with b

 Build an FSM that accepts
all words of length 3

  = {a, b}

 Build an FSM that accepts
all decimal integers

 Disallow leading zeros

  = {0,1,2,3,4,5,6,7,8,9}

 Dead state not shown

▪ Any transition from 0 final
state

a,b

a,b a,b

start length
1

length
2

length
3

length
4+

start
begins

with
1-9

0

1-9 0-9

0

 Implement in a simple loop

 Algorithm:
state = start

while there is still input

c = next input symbol

if transition(state, c) exists

state = transition(state, c)

else

reject (or state = dead state)

end while

if state is a final state accept

else reject

start
begins

with
1-9

0

1-9 0-9

0

Implement transitions with a
table or a case statement

state /
c 0 1-9

start begin 0 begin 1-9

begin 0 dead dead

begin 1-9 begin 1-9 begin 1-9

 FSMs can be augmented with other information

 Actions

 Transitions to a state may be associated with an action

▪ Such as the calculation of a value

 Shown after the input character on the transition arc

▪ Typically separated from the input by a /

 Output

 Transitions may also be associated with output

 Again, shown after the input character(s) associated with

the transition

1-91-9/A1

 Perform an action during
a transition

 Place actions on transition,
following a slash

 What might be a useful
action in the FSM to
accept integers?

 The value of the integer

▪ A1: val = c

▪ A2: val = 10 * val + c

0-9start
begins

with
1-9

0

0

0-9/A2

0/A1

 Build an FSM that performs
block reduction

 That reports 0 for each
sequence of 0s

 And 1 for each sequence of 1s

 Example

 111000010011100011 goes to

 1010101

 Note that  represents the
empty string

1

0

block
of 0s

block
of 1s

1

0

1/

0/01/1

0/

 FSMs are a mathematical model of computation

 The behavior of many devices can be modeled by a
state machine

▪ Vending machines

▪ Traffic lights

▪ …

 FSMs can be used to model systems

 In engineering

 And computing science

▪ To model the behavior of an application

