
An Introduction to C++



 Introduction to C++
 C++ classes
 C++ class details





 To create a complex type in C
 In the .h file

 Define structs to store data

 Declare function prototypes

 The .h file serves as the interface
 In the .c file

 Define function implementations

 Implementation is kept separate from the 
interface



 Data and operations (functions) are still separate 

to some extent

 It is still open to misuse by errant programmers

 As direct access to struct data is still possible

▪ LL_t* ll = LLcreate();

▪ …

▪ ll->head->next->next->next = ll->head->next;

 One solution: classes

 Which do not exist in C



 C++ evolved from C

 Created by Bjarne Stroustrup in 1978

 Motivated by interface issues

 Provides constructs to support

 Information hiding

 Encapsulation of data and functions (methods)

 Common situations for code re-use



 Classes encapsulate both data and operations

 Functions that belong to a class are referred to as 
methods

 Class data and methods can explicitly be made 
public or private

 Which prevents programmers using a class to access 
its implementation details

▪ Syntactically enforcing information hiding

 Classes can be inherited

 Which we will not discuss in CMPT 125



 There are many differences between C and C++

 C++ has many libraries that incorporate classes

▪ Such as a string class

 The bool data type

 Template classes and functions

 Exception handling

 Different pointer types

▪ A feature of modern C++ (C++11)

 …

 We do not have time to look at all these features

 But we will briefly discuss memory management



 We can use malloc and calloc to allocate dynamic 
memory in our C++ programs

 Don't

 C++ has its own syntax for allocating and deallocating 
dynamic memory

 To allocate dynamic memory use new
▪ int* arr = new int[10];

▪ Node* nd = new Node;

 To deallocate dynamic memory use delete

▪ delete[] arr;

▪ delete nd;

The compiler figures out how
much space is needed

The []s are needed to delete an array





 A class provides the definition of a complex 
datatype and its operations

 A class is a type definition

▪ And is used in much the same way as base 
types (int, char, etc.)

 Creating a class does not create class variables 

 Class variables are called objects

 Creating a new object of a class is 
referred to as instantiating an object

▪ The process is referred as instantiation



 C++ classes are typically broken down into two files

 The class definition is in a .h file

 Contains class variables (properties)

 And method prototypes

 The method implementations are in a .cpp file

 Which #includes the .h file

 Method implementations are preceded by the class name 

and the scope resolution operator, ::

▪ their fully qualified names

class LinkedList {
//…

};

void LinkedList::append(int val) {
//…

}



 Classes have special methods that are used to 
instantiate objects

 Called constructors

 Constructors give class properties appropriate values

▪ That respect class invariants

 Constructors have the same 
name as the class and no return type

 A class can have multiple constructors

 With different parameter lists

▪ An example of function overloading

class LinkedList {
//constructor
LinkedList();

If no constructor is defined
for a class the compiler
creates a default constructor



 In C++ the programmer decides whether objects 
are created on the stack or the heap
 LinkedList ll;

▪ Not the lack of brackets in the default constructor call

 LinkedList* ll2 = new LinkedList(ll);

▪ Creates a copy of a linked list using the copy constructor

 Note that different constructors have the same 
name but different parameter lists

 Because the parameter lists are different there is no 
ambiguity

Creates a linked list on the stack

On heap



 A copy constructor allows us to create a copy 
of an existing object

 Its sole parameter is the object to be copied

 Passed as a constant reference

 C++ helpfully auto-generates a copy 
constructor if a class doesn’t have one

 However it is often necessary to create your own 
copy constructor

 We will discuss this later



 A class definition is divided into public and 
private sections

 And some times protected – relating to inheritance

 Public attributes and methods can be accessed 
by non-class objects and functions

 i.e. from outside the class

 Private attributes and methods can only be 
accessed inside the class

 That is, within the implementation of class methods



 The private section of a class relates to its 
implementation and data

 Class data is generally made private

 Making class data private has two useful effects

 It allows the implementation to be changed without also 
changing the interface

 It protects class data from being given inappropriate 
values

 In addition to data, helper methods should also be 
made private



 The public section of a class makes up its 
interface

 A set of methods that define the class operations

 Only methods that are required to be accessed from 
outside the class should be made public

 Since class data is private it can only be accessed 
through methods

 Setter methods change data

 Getter methods access data

also known as mutators

also known as accessors

but can be directly accessed from within the class



 The interface should be public and the 
implementation private

 This allows the implementation to be 
protected from inappropriate changes

 Typically, class attributes should be made private

 And only changed through public methods

 Making the implementation private allows it 
to be changed

 Without affecting programs using the class



 A setter method sets the value of a class attribute
 Setters should respect class invariants

 That is they should not allow class attributes to be given 
inappropriate values
▪ Such as radius never being negative

 If an invalid value is passed to a setter it should do 
something about it – what?

 Change the method to return a boolean?

 Assign a default value?

 Throw an error?



class Point
{
public:

Point();
Point(int x1, int y1);
void setPoint(int x1, int y1);
int getx();
int gety();

private:
int x;
int y;

};

void Point::setPoint(int x1, int y1)
{

x = x1;
y = y1;

}

What's the point of the setter?





 C++ provides new and delete instead of malloc and 
free to allocate and deallocate dynamic memory

 It is particularly important to use new and delete when 
creating or destroying objects

 In addition to allocating space on the heap and returning 
its address new also calls the appropriate constructor

 In addition to deallocating space delete also calls the class 
destructor

 What's a destructor?

 A special function responsible for cleaning 
up memory associated with an object



 Class programmers have responsibilities 

relating to the use of dynamic memory

 If a class allocates space in dynamic memory 

to the class properties the programmer must

 Write a destructor

 Write a copy constructor

 Write an overloaded assignment operator

 Failure to do may result in undesired results



 A destructor is responsible for cleaning up dynamic 
memory allocated to an object

 The destructor should call delete on any variable allocated 
space in dynamic memory
▪ For a linked list this would entail traversing the list and calling delete

on each node

 Destructors have a particular prototype

 The name of the class preceded by a tilde
▪ ~LinkedList();

 Destructors are never explicitly called

 But are invoked when delete is called on an object



 A copy constructor creates an object that is a 
copy of an existing object

 If a copy constructor is not created one is 
automatically created

▪ But it only make a shallow copy

45ll1.head

ll1.tail

29 13 42 NULL

LinkedList ll2(ll1);

ll2.head

ll2.tail

Copies the addresses not the nodes!



 A copy constructor for a class that allocated dynamic 

memory should make a deep copy of an object

 A deep copy creates a copy of data stored on the heap

▪ Instead of making copies of addresses to the data

 A copy constructor for a linked list would traverse 

through the original list

 Calling new to create a copy of each node to build a 

separate and complete list

 And setting the head and tail of the new linked list object 

to the addresses of the start and end of the new list



 The copy constructor and destructor address most of 

the issues with classes and dynamic memory

 The destructor deallocates dynamic memory 

allocated to an object

 The copy constructor deals with

 Explicitly creating a copy of an existing object

▪ By calling the constructor

 Passing an object by value to a function parameter

▪ Which calls the copy constructor to create the new object

 What happens when one object is assigned another?



LinkedList ll1;
LinkedList ll2;

// Populate lists and work with ll1 and ll2

ll1 = ll2;

What happens?

 Presumably the intent is to make ll1 a copy of ll2

 Destroying the original contents of ll1 in the process

 Looks very similar to what the copy constructor does

 But ll1's copy constructor is not called in this situation
▪ Why not?

 Solution: overload the assignment operator



 C++ allows its operators to be overloaded

 Have their operations defined for use with non 

base-type variables

 Much like the copy constructor the assignment 

operator creates a shallow copy

 Unless the class programmer explicitly overloads the 

assignment operator to make a deep copy

 The overloaded assignment operator should also 

clean up memory associated with the original object


