
An Introduction to C++



 Introduction to C++
 C++ classes
 C++ class details





 To create a complex type in C
 In the .h file

 Define structs to store data

 Declare function prototypes

 The .h file serves as the interface
 In the .c file

 Define function implementations

 Implementation is kept separate from the 
interface



 Data and operations (functions) are still separate 

to some extent

 It is still open to misuse by errant programmers

 As direct access to struct data is still possible

▪ LL_t* ll = LLcreate();

▪ …

▪ ll->head->next->next->next = ll->head->next;

 One solution: classes

 Which do not exist in C



 C++ evolved from C

 Created by Bjarne Stroustrup in 1978

 Motivated by interface issues

 Provides constructs to support

 Information hiding

 Encapsulation of data and functions (methods)

 Common situations for code re-use



 Classes encapsulate both data and operations

 Functions that belong to a class are referred to as 
methods

 Class data and methods can explicitly be made 
public or private

 Which prevents programmers using a class to access 
its implementation details

▪ Syntactically enforcing information hiding

 Classes can be inherited

 Which we will not discuss in CMPT 125



 There are many differences between C and C++

 C++ has many libraries that incorporate classes

▪ Such as a string class

 The bool data type

 Template classes and functions

 Exception handling

 Different pointer types

▪ A feature of modern C++ (C++11)

 …

 We do not have time to look at all these features

 But we will briefly discuss memory management



 We can use malloc and calloc to allocate dynamic 
memory in our C++ programs

 Don't

 C++ has its own syntax for allocating and deallocating 
dynamic memory

 To allocate dynamic memory use new
▪ int* arr = new int[10];

▪ Node* nd = new Node;

 To deallocate dynamic memory use delete

▪ delete[] arr;

▪ delete nd;

The compiler figures out how
much space is needed

The []s are needed to delete an array





 A class provides the definition of a complex 
datatype and its operations

 A class is a type definition

▪ And is used in much the same way as base 
types (int, char, etc.)

 Creating a class does not create class variables 

 Class variables are called objects

 Creating a new object of a class is 
referred to as instantiating an object

▪ The process is referred as instantiation



 C++ classes are typically broken down into two files

 The class definition is in a .h file

 Contains class variables (properties)

 And method prototypes

 The method implementations are in a .cpp file

 Which #includes the .h file

 Method implementations are preceded by the class name 

and the scope resolution operator, ::

▪ their fully qualified names

class LinkedList {
//…

};

void LinkedList::append(int val) {
//…

}



 Classes have special methods that are used to 
instantiate objects

 Called constructors

 Constructors give class properties appropriate values

▪ That respect class invariants

 Constructors have the same 
name as the class and no return type

 A class can have multiple constructors

 With different parameter lists

▪ An example of function overloading

class LinkedList {
//constructor
LinkedList();

If no constructor is defined
for a class the compiler
creates a default constructor



 In C++ the programmer decides whether objects 
are created on the stack or the heap
 LinkedList ll;

▪ Not the lack of brackets in the default constructor call

 LinkedList* ll2 = new LinkedList(ll);

▪ Creates a copy of a linked list using the copy constructor

 Note that different constructors have the same 
name but different parameter lists

 Because the parameter lists are different there is no 
ambiguity

Creates a linked list on the stack

On heap



 A copy constructor allows us to create a copy 
of an existing object

 Its sole parameter is the object to be copied

 Passed as a constant reference

 C++ helpfully auto-generates a copy 
constructor if a class doesn’t have one

 However it is often necessary to create your own 
copy constructor

 We will discuss this later



 A class definition is divided into public and 
private sections

 And some times protected – relating to inheritance

 Public attributes and methods can be accessed 
by non-class objects and functions

 i.e. from outside the class

 Private attributes and methods can only be 
accessed inside the class

 That is, within the implementation of class methods



 The private section of a class relates to its 
implementation and data

 Class data is generally made private

 Making class data private has two useful effects

 It allows the implementation to be changed without also 
changing the interface

 It protects class data from being given inappropriate 
values

 In addition to data, helper methods should also be 
made private



 The public section of a class makes up its 
interface

 A set of methods that define the class operations

 Only methods that are required to be accessed from 
outside the class should be made public

 Since class data is private it can only be accessed 
through methods

 Setter methods change data

 Getter methods access data

also known as mutators

also known as accessors

but can be directly accessed from within the class



 The interface should be public and the 
implementation private

 This allows the implementation to be 
protected from inappropriate changes

 Typically, class attributes should be made private

 And only changed through public methods

 Making the implementation private allows it 
to be changed

 Without affecting programs using the class



 A setter method sets the value of a class attribute
 Setters should respect class invariants

 That is they should not allow class attributes to be given 
inappropriate values
▪ Such as radius never being negative

 If an invalid value is passed to a setter it should do 
something about it – what?

 Change the method to return a boolean?

 Assign a default value?

 Throw an error?



class Point
{
public:

Point();
Point(int x1, int y1);
void setPoint(int x1, int y1);
int getx();
int gety();

private:
int x;
int y;

};

void Point::setPoint(int x1, int y1)
{

x = x1;
y = y1;

}

What's the point of the setter?





 C++ provides new and delete instead of malloc and 
free to allocate and deallocate dynamic memory

 It is particularly important to use new and delete when 
creating or destroying objects

 In addition to allocating space on the heap and returning 
its address new also calls the appropriate constructor

 In addition to deallocating space delete also calls the class 
destructor

 What's a destructor?

 A special function responsible for cleaning 
up memory associated with an object



 Class programmers have responsibilities 

relating to the use of dynamic memory

 If a class allocates space in dynamic memory 

to the class properties the programmer must

 Write a destructor

 Write a copy constructor

 Write an overloaded assignment operator

 Failure to do may result in undesired results



 A destructor is responsible for cleaning up dynamic 
memory allocated to an object

 The destructor should call delete on any variable allocated 
space in dynamic memory
▪ For a linked list this would entail traversing the list and calling delete

on each node

 Destructors have a particular prototype

 The name of the class preceded by a tilde
▪ ~LinkedList();

 Destructors are never explicitly called

 But are invoked when delete is called on an object



 A copy constructor creates an object that is a 
copy of an existing object

 If a copy constructor is not created one is 
automatically created

▪ But it only make a shallow copy

45ll1.head

ll1.tail

29 13 42 NULL

LinkedList ll2(ll1);

ll2.head

ll2.tail

Copies the addresses not the nodes!



 A copy constructor for a class that allocated dynamic 

memory should make a deep copy of an object

 A deep copy creates a copy of data stored on the heap

▪ Instead of making copies of addresses to the data

 A copy constructor for a linked list would traverse 

through the original list

 Calling new to create a copy of each node to build a 

separate and complete list

 And setting the head and tail of the new linked list object 

to the addresses of the start and end of the new list



 The copy constructor and destructor address most of 

the issues with classes and dynamic memory

 The destructor deallocates dynamic memory 

allocated to an object

 The copy constructor deals with

 Explicitly creating a copy of an existing object

▪ By calling the constructor

 Passing an object by value to a function parameter

▪ Which calls the copy constructor to create the new object

 What happens when one object is assigned another?



LinkedList ll1;
LinkedList ll2;

// Populate lists and work with ll1 and ll2

ll1 = ll2;

What happens?

 Presumably the intent is to make ll1 a copy of ll2

 Destroying the original contents of ll1 in the process

 Looks very similar to what the copy constructor does

 But ll1's copy constructor is not called in this situation
▪ Why not?

 Solution: overload the assignment operator



 C++ allows its operators to be overloaded

 Have their operations defined for use with non 

base-type variables

 Much like the copy constructor the assignment 

operator creates a shallow copy

 Unless the class programmer explicitly overloads the 

assignment operator to make a deep copy

 The overloaded assignment operator should also 

clean up memory associated with the original object


