An Introduction to C++

Classes

Classes

Introduction to C++
C++ classes
C++ class details

Introduction to C++

ComplexTypesinC

To create a complex typeinC
In the .h file

Define structs to store data

Declare function prototypes

The .h file serves as the interface
In the .c file

Define function implementations

Implementation is kept separate from the
interface

Data and operations (functions) are still separate
to some extent
It is still open to misuse by errant programmers

As direct access to struct data is still possible
LL t* 11 = LLcreate();

11->head->next->next->next = 1ll->head->next;
One solution: classes

Which do not exist in C

C++

C++ evolved from C
Created by Bjarne Stroustrup in 1978

Motivated by interface issues
Provides constructs to support

Information hiding
Encapsulation of data and functions (methods)

Common situations for code re-use

C++ Classes

Classes encapsulate both data and operations

Functions that belong to a class are referred to as
methods
Class data and methods can explicitly be made

public or private

Which prevents programmers using a class to access
its implementation details
Syntactically enforcing information hiding
Classes can be inherited

Which we will not discuss in CMPT 125

There are many differences between Cand C++

C++ has many libraries that incorporate classes
Such as a string class

The bool data type
Template classes and functions
Exception handling

Different pointer types
A feature of modern C++ (C++11)

We do not have time to look at all these features

But we will briefly discuss memory management

Allocating Dynamic Memory in C++

We can use malloc and calloc to allocate dynamic
memory in our C++ programs

Don't
C++ has its own syntax for allocating and deallocating
dynamic memory

To allocate dynamic memory use new

int* arr = new int[10]; The compiler figures out how

Node* nd = new Node; much space is needed
To deallocate dynamic memory use delete

delete[] arr; The []s are needed to delete an array
delete nd;

C++ Class Syntax

Talking About Classes

A class provides the definition of a complex
datatype and its operations

A class is a type definition

And is used in much the same way as base
types (int, char, etc.)

Creating a class does not create class variables
Class variables are called objects

Creating a new object of a class is
referred to as instantiating an object
The process is referred as instantiation

Class Structure and Files

C++ classes are typically broken down into two files

The class definitionisin a.hfile Clasj/Li“kedList {

Contains class variables (properties) s

And method prototypes
The method implementations arein a.cpp file

Which #includes the .hfile

Method implementations are preceded by the class name
and the scope resolution operator, : :

their fully qualified names void LinkedList::append(int val) {
//.I.
}

Constructors

Classes have special methods that are used to
instantiate objects

Called constructors
Constructors give class properties appropriate values

That respect class invariants class LinkedlList {
//constructor
Constructors have the same LinkedList();

name as the class and no return type
A class can have multiple constructors

With different parameter lists If no constructor is defiryed
for a class the compiler

An example of function overloading creates a default constructor

Stack or Heap

In C++ the programmer decides whether objects
are created on the stack or the heap

LinkedList 11; Creates a linked list on the stack
Not the lack of brackets in the default constructor call

LinkedList* 112 = new LinkedList(1l); Onheap
Creates a copy of a linked list using the copy constructor

Note that different constructors have the same
name but different parameter lists

Because the parameter lists are different there is no
ambiguity

Copy Constructors

A copy constructor allows us to create a copy
of an existing object
Its sole parameter is the object to be copied

Passed asS a constant reference
C++ helpfully auto-generates a copy
constructor if a class doesn’t have one

However it is often necessary to create your own
copy constructor

We will discuss this later

Public and Private

A class definition is divided into public and
private sections

And some times protected — relating to inheritance
Public attributes and methods can be accessed
by non-class objects and functions

i.e. from outside the class
Private attributes and methods can only be
accessed inside the class

That is, within the implementation of class methods

Private Section

The private section of a class relates to its
implementation and data

Class data is generally made private
Making class data private has two useful effects

It allows the implementation to be changed without also
changing the interface

It protects class data from being given inappropriate
values

In addition to data, helper methods should also be
made private

Public Section

The public section of a class makes up its
interface
A set of methods that define the class operations

Only methods that are required to be accessed from
outside the class should be made public

Since class data is private it can only be accessed
through methods but can be directly accessed from within the class

Setter methods change data also known as mutators

Getter methods access data also known as accessors

Good Design: Public and Private

The interface should be public and the
implementation private

This allows the implementation to be
protected from inappropriate changes

Typically, class attributes should be made private

And only changed through public methods

Making the implementation private allows it
to be changed

Without affecting programs using the class

Setter Methods

A setter method sets the value of a class attribute
Setters should respect class invariants

That is they should not allow class attributes to be given
inappropriate values

Such as radius never being negative
If an invalid value is passed to a setter it should do
something about it — what?
Change the method to return a boolean?
Assign a default value?
Throw an error?

Good Design?

class Point
{
public:
Point();
Point(int x1, int y1);
void setPoint(int x1, int y1);
int getx();
int gety(); void Point::setPoint(int x1, int y1)
{
private: X = X1;
int x; y = yi;
int y; }
}s |

What's the point of the setter?

C++ Class Issues

More About new and delete

C++ provides new and delete instead of malloc and
free to allocate and deallocate dynamic memory

It is particularly important to use new and delete when
creating or destroying objects

In addition to allocating space on the heap and returning
its address new also calls the appropriate constructor

In addition to deallocating space delete also calls the class
destructor

What's a destructor?

A special function responsible for cleaning
up memory associated with an object

Classes and Dynamic Memory

Class programmers have responsibilities
relating to the use of dynamic memory

If a class allocates space in dynamic memory
to the class properties the programmer must

Write a destructor
Write a copy constructor

Write an overloaded assignment operator
Failure to do may result in undesired results

Destructors

A destructor is responsible for cleaning up dynamic
memory allocated to an object
The destructor should call delete on any variable allocated
space in dynamic memory

For a linked list this would entail traversing the list and calling delete
on each node

Destructors have a particular prototype

The name of the class preceded by a tilde
~LinkedList();

Destructors are never explicitly called

But are invoked when delete is called on an object

Copy Constructors

A copy constructor creates an object thatis a
copy of an existing object

If a copy constructor is not created one is
automatically created

But it only make a shallow copy

LinkedList 112(111); Copies the addresses not the nodes!
l12.head
l12.tail

ll2.head 45 29 13 42 NULL

l12.tail

Deep Copy

A copy constructor for a class that allocated dynamic
memory should make a deep copy of an object
A deep copy creates a copy of data stored on the heap

Instead of making copies of addresses to the data

A copy constructor for a linked list would traverse
through the original list

Calling new to create a copy of each node to build a
separate and complete list

And setting the head and tail of the new linked list object
to the addresses of the start and end of the new list

Assignment

The copy constructor and destructor address most of
the issues with classes and dynamic memory

T
d
T

ne destructor deallocates dynamic memory
located to an object

ne copy constructor deals with
Explicitly creating a copy of an existing object
By calling the constructor

Passing an object by value to a function parameter

Which calls the copy constructor to create the new object

What happens when one object is assigned another?

Consider This

LinkedList 111;
LinkedList 112;

?
[/bPopulateslisterandinorkinithilitiandalizn SkaI2RRS0S

111 = 112;

Presumably the intent is to make [[1 a copy of lI2

Destroying the original contents of {1 in the process
Looks very similar to what the copy constructor does
But ll1's copy constructor is not called in this situation
Why not?
Solution: overload the assignment operator

Overloaded Operators

C++ allows its operators to be overloaded

Have their operations defined for use with non
base-type variables

Much like the copy constructor the assignment
operator creates a shallow copy

Unless the class programmer explicitly overloads the
assignment operator to make a deep copy

The overloaded assignment operator should also
clean up memory associated with the original object

