Abstract Data Types



Objectives

Abstract data types
Linked lists
Linked list functions

John Edgar



Abstract Data Types




Stacks Review

Stacks

A stack is an ordered collection of items

LIFO

ltems are inserted at the top
Pushed

And removed from the top
Popped



Stack Description

The definition of a stack was independent

from its implementation
An example of an abstract data type (ADT)

An abstract data type is a collection of data
and operations on that data

An ADT describes operations and data are
allowed

But not how they are implemented



Abstract Data Types

An ADT is a collection of data and a set of
allowed operations on that data

Does not specify how the data are stored or how the
operations are performed

The definition focuses on the use of the ADT

A data structure specifies the implemenation

And particular data structures are often used to
implement an ADT

The two interact via an interface



A queue is another example of an ADT

Behaves like a line-up

Or, in Britain, a queue
FIFO

ltems are inserted at the back
of the queue

Enqueued

And removed from the front of the queue
Dequeued



Interfaces

An interface refers to a collection of data and
expected behaviours
Specifies inputs and outputs

Serves as a contract
Interfaces we have seen in CMPT 125 or 127
Functions pre and post conditions and invariants

Collections of functions

Header files



Why Use Interfaces?

There are advantages in using an interface
Code re-use
Code independence
Modularity

Interfaces specify what data and operations are
required
Without implementation details

The same interface could be implemented in widely
different ways



Software Engineering Principles

Encapsulation
Bundle related data and operations together
Modularity

Break up problems into smaller, more manageable,
programming tasks

Information hiding
Keep implementation details private
Keep the interface stable

Finding a good selection of interfaces is one of the
foundations of writing large scale software



Interface Examples

Stack Appendable array
Sequence of data Sequence of data
LIFO append (add to end)
insert (push) size
remove (pop) access (get)
iISEmpty change (set)
peek

not
size required




Appendable Array ADT

Array implementation — variables
Keep track of current size
Keep a pointer to the array

Array implementation — operations
Access —index look up and bounds check
Change —index look up, set value and bounds check

Append — need to malloc a new array and copy the
contents of the old array to it

Running time?



Appendable Array ADT

Linked list implementation
Items consist of a value and a pointer to the next item
Keep track of the head (front) and tail (back) of the list
When an element is appended add it to the list's tail

The tail's next pointer is set to NULL to indicate that it
does not point to anything

Running time of operations?



Linked Lists




Linked Lists

Linked list items

Consist of pairs
A value (the list data)

A pointer to the next item
in the list

Together they form a node 45 NULL

head

The pointer s initially set
to null
The list requires a

pointer to the first node
The head of the list



Appendable Lists

Appendable list structure

An appendable list adds
new values to the end

We could find the end by
traversing the list 45 NULL

head

It is much more efficient to

keep track of the end

: . tail
With another pointer to the |

tail of the list

Initially the same as the head



Appending Values

To append a value

- head
Create a new value : pointer Ky

pair in dynamic memory

In C, use malloc

. NULL
Assign its address to the i

pointer of the tail node

Then make the tail pointer 37 NULL

point to the new node .
tail

Because it is the new value at
the end of the list



Packaging Nodes

It is convenient to create a datatype to represent a
node

So that nodes can be passed to functions

And created in dynamic memory as a single unit
In C this is achieved by defining a node as a structure
Using the keyword struct
Structure declarations must be preceded by the
keyword struct

struct node x1; and notnode x1;
So use typedef to name the structure and avoid this



Building A Linked List

A node is not the same as a linked list
It is just a single link
To create a linked list
Write a struct for the linked list
And functions to insert, remove and query the
list
The linked list struct contains

A node for the head of the list
And, for an appendable list, a node for the tail



Interface and Implementation

It is good practice to separate the interface and

the implementation

By putting each in its own file
The interface consists of a .h file
The implementation consists of a .c file

The .h file contains

The struct definitions
Function prototypes

The .c file contains
Function definitions



Compiling Multiple Files

Assume that a project consists of
node . h — contains the definition of a node struct
LL . h—contains the definition of a linked list struct
and function prototypes
LL.c —contains the definition of the linked list
functions listed in LL. h
lists.c - contains a main function that tests

linked lists

To compile the project
gcc -0 lists lists.c LL.c



Linked List Functions




Append

There are two major steps
Allocate space for the new node using malloc

Assign its address to the tail node's next pointer

Correctly maintain head and tail

Head doesn't change and tail points to the new node

But don't just consider the typical case
What happens when the list is empty?

head 45 29 13 42 NULL

31 NULL
tail



Print should output the values in the list

In order from head to tail

Dereference all the pointers in the list

head, then head->next, then head->next->next, ...

Stop when next is NULL

Use a while loop

head 45 29 13 42 NULL

tail



Search

Very similar to print
Traverses the list from head to tail

Except that it returns 1 if a node's value is the same as the
target

Linear search

On a linked list rather than an array
Running time?

head 45 29 13 42 NULL

tail



Other Linked List Functions

There are many functions we could imagine writing for
linked lists

Destroying the list

Concatenating two lists

Inserting elements at the front of the list

Inserting elements next to some other element

Sorting the list

An important design issue for an ADT is that it should not
have more operations than are specified in its description

A stack that allows insertions anywhere is not a stack



Linked List Edge Cases

If a function modifies a linked list then design
for the typical case and consider

What happens if the list is empty?

nat happens if the list consists of a single item?

W
When should the head change?
W

nen should the tail change?

If there is a tail



Destroying a List

Once a listis no longer needed its memory should be
deallocated

Using free

There is a timing issue here

You can't look at the next pointer once you've destroyed its node

So set temp to head and set head to point to the next node
And stop when head is NULL

head 45 29 13 42 NULL

tail



Linked Lists and Recursion




Recursive Definition

A linked list can be defined recursively

It is composed of its first node

And another, slightly smaller, list
LISP (List Processing) is a programming
language based around lists

The car operator refers to the first node

The cdr operator refers to the rest of the list



Recursive List Functions

Many linked list functions can be written
recursively

Base case —stop if node is NULL

Do something with the current node

Call the function recursively on the rest of the list
Write a function to print the contents of a list in
reverse order

Try writing this iteratively

And then recursively



