


 Abstract data types
 Linked lists
 Linked list functions

John Edgar 2





 Stacks

 A stack is an ordered collection of items

 LIFO

 Items are inserted at the top

▪ Pushed

 And removed from the top

▪ Popped



 The definition of a stack was independent 

from its implementation
 An example of an abstract data type (ADT)

 An abstract data type is a collection of data 

and operations on that data

 An ADT describes what operations and data are 

allowed

 But not how they are implemented



 An ADT is a collection of data and a set of 
allowed operations on that data

 Does not specify how the data are stored or how the 
operations are performed

 The definition focuses on the use of the ADT

 A data structure specifies the implemenation

 And particular data structures are often used to 
implement an ADT

 The two interact via an interface



 A queue is another example of an ADT

 Behaves like a line-up

▪ Or, in Britain, a queue

 FIFO

 Items are inserted at the back 
of the queue

▪ Enqueued

 And removed from the front of the queue

▪ Dequeued



 An interface refers to a collection of data and 

expected behaviours

 Specifies inputs and outputs

 Serves as a contract

 Interfaces we have seen in CMPT 125 or 127

 Functions pre and post conditions and invariants

 Collections of functions

 Header files



 There are advantages in using an interface

 Code re-use

 Code independence

 Modularity

 Interfaces specify what data and operations are 
required

 Without implementation details

 The same interface could be implemented in widely 
different ways



 Encapsulation

 Bundle related data and operations together

 Modularity

 Break up problems into smaller, more manageable, 
programming tasks

 Information hiding

 Keep implementation details private

 Keep the interface stable

 Finding a good selection of interfaces is one of the 
foundations of writing large scale software



not 
required

 Stack

 Sequence of data

 LIFO 

 insert (push)

 remove (pop)

 isEmpty

 peek

 size

 Appendable array

 Sequence of data

 append (add to end)

 size

 access (get)

 change (set)



 Array implementation – variables

 Keep track of current size

 Keep a pointer to the array

 Array implementation – operations

 Access – index look up and bounds check

 Change – index look up, set value and bounds check

 Append – need to malloc a new array and copy the 
contents of the old array to it

▪ Running time?



 Linked list implementation

 Items consist of a value and a pointer to the next item

 Keep track of the head (front) and tail (back) of the list

 When an element is appended add it to the list's tail

 The tail's next pointer is set to NULL to indicate that it 

does not point to anything

 Running time of operations?





45

value

pointer

NULL

 Linked list items

 Consist of pairs
▪ A value (the list data)

▪ A pointer to the next item 
in the list

▪ Together they form a node

 The pointer is initially set 
to null

 The list requires a 
pointer to the first node
▪ The head of the list

head



45 NULL

 Appendable list structure

 An appendable list adds 

new values to the end

 We could find the end by 

traversing the list

 It is much more efficient to 

keep track of the end

▪ With another pointer to the 

tail of the list

▪ Initially the same as the head

head

tail



45 NULL

 To append a value

 Create a new value : pointer 

pair in dynamic memory

▪ In C, use malloc

 Assign its address to the 

pointer of the tail node

 Then make the tail pointer 

point to the new node

▪ Because it is the new value at 

the end of the list

head

tail

37 NULL



 It is convenient to create a datatype to represent a 
node

 So that nodes can be passed to functions

 And created in dynamic memory as a single unit

 In C this is achieved by defining a node as a structure
 Using the keyword struct

 Structure declarations must be preceded by the 
keyword struct
 struct node x1; and not node x1;
 So use typedef to name the structure and avoid this



A node is not the same as a linked list
 It is just a single link

To create a linked list
 Write a struct for the linked list
 And functions to insert, remove and query the 

list

The linked list struct contains
 A node for the head of the list
 And, for an appendable list, a node for the tail



 It is good practice to separate the interface and 
the implementation
 By putting each in its own file
▪ The interface consists of a .h file
▪ The implementation consists of a .c file

 The .h file contains
 The struct definitions
 Function prototypes

 The .c file contains
 Function definitions 



 Assume that a project consists of
 node.h – contains the definition of a node struct
 LL.h – contains the definition of a linked list struct 

and function prototypes
 LL.c – contains the definition of the linked list 

functions listed in LL.h
 lists.c – contains a main function that tests 

linked lists

 To compile the project
 gcc –o lists lists.c LL.c





 There are two major steps
 Allocate space for the new node using malloc

▪ Assign its address to the tail node's next pointer

 Correctly maintain head and tail
▪ Head doesn't change and tail points to the new node

 But don't just consider the typical case

▪ What happens when the list is empty?

45head

tail

29 13 42 NULL

31 NULL



 Print should output the values in the list

 In order from head to tail

 Dereference all the pointers in the list

▪ head, then head->next, then head->next->next, …

 Stop when next is NULL

▪ Use a while loop

45head

tail

29 13 42 NULL

temp

45 29 13 42output:



 Very similar to print
 Traverses the list from head to tail

 Except that it returns 1 if a node's value is the same as the 
target

 Linear search
▪ On a linked list rather than an array

▪ Running time?

45head

tail

29 13 42 NULL

temp returns 1search(13):



 There are many functions we could imagine writing for 
linked lists

 Destroying the list

 Concatenating two lists

 Inserting elements at the front of the list

 Inserting elements next to some other element

 Sorting the list

 …

 An important design issue for an ADT is that it should not 
have more operations than are specified in its description

 A stack that allows insertions anywhere is not a stack



 If a function modifies a linked list then design 

for the typical case and consider

 What happens if the list is empty?

 What happens if the list consists of a single item?

 When should the head change?

 When should the tail change?

▪ If there is a tail



 Once a list is no longer needed its memory should be 
deallocated

 Using free

 There is a timing issue here

▪ You can't look at the next pointer once you've destroyed its node

 So set temp to head and set head to point to the next node

▪ And stop when head is NULL

45head

tail

29 13 42 NULL

temp





 A linked list can be defined recursively

 It is composed of its first node

 And another, slightly smaller, list

 LISP (List Processing) is a programming 

language based around lists

 The car operator refers to the first node

 The cdr operator refers to the rest of the list



 Many linked list functions can be written 
recursively

 Base case – stop if node is NULL

 Do something with the current node

 Call the function recursively on the rest of the list

 Write a function to print the contents of a list in 
reverse order

 Try writing this iteratively

 And then recursively


