


 Abstract data types
 Linked lists
 Linked list functions

John Edgar 2





 Stacks

 A stack is an ordered collection of items

 LIFO

 Items are inserted at the top

▪ Pushed

 And removed from the top

▪ Popped



 The definition of a stack was independent 

from its implementation
 An example of an abstract data type (ADT)

 An abstract data type is a collection of data 

and operations on that data

 An ADT describes what operations and data are 

allowed

 But not how they are implemented



 An ADT is a collection of data and a set of 
allowed operations on that data

 Does not specify how the data are stored or how the 
operations are performed

 The definition focuses on the use of the ADT

 A data structure specifies the implemenation

 And particular data structures are often used to 
implement an ADT

 The two interact via an interface



 A queue is another example of an ADT

 Behaves like a line-up

▪ Or, in Britain, a queue

 FIFO

 Items are inserted at the back 
of the queue

▪ Enqueued

 And removed from the front of the queue

▪ Dequeued



 An interface refers to a collection of data and 

expected behaviours

 Specifies inputs and outputs

 Serves as a contract

 Interfaces we have seen in CMPT 125 or 127

 Functions pre and post conditions and invariants

 Collections of functions

 Header files



 There are advantages in using an interface

 Code re-use

 Code independence

 Modularity

 Interfaces specify what data and operations are 
required

 Without implementation details

 The same interface could be implemented in widely 
different ways



 Encapsulation

 Bundle related data and operations together

 Modularity

 Break up problems into smaller, more manageable, 
programming tasks

 Information hiding

 Keep implementation details private

 Keep the interface stable

 Finding a good selection of interfaces is one of the 
foundations of writing large scale software



not 
required

 Stack

 Sequence of data

 LIFO 

 insert (push)

 remove (pop)

 isEmpty

 peek

 size

 Appendable array

 Sequence of data

 append (add to end)

 size

 access (get)

 change (set)



 Array implementation – variables

 Keep track of current size

 Keep a pointer to the array

 Array implementation – operations

 Access – index look up and bounds check

 Change – index look up, set value and bounds check

 Append – need to malloc a new array and copy the 
contents of the old array to it

▪ Running time?



 Linked list implementation

 Items consist of a value and a pointer to the next item

 Keep track of the head (front) and tail (back) of the list

 When an element is appended add it to the list's tail

 The tail's next pointer is set to NULL to indicate that it 

does not point to anything

 Running time of operations?





45

value

pointer

NULL

 Linked list items

 Consist of pairs
▪ A value (the list data)

▪ A pointer to the next item 
in the list

▪ Together they form a node

 The pointer is initially set 
to null

 The list requires a 
pointer to the first node
▪ The head of the list

head



45 NULL

 Appendable list structure

 An appendable list adds 

new values to the end

 We could find the end by 

traversing the list

 It is much more efficient to 

keep track of the end

▪ With another pointer to the 

tail of the list

▪ Initially the same as the head

head

tail



45 NULL

 To append a value

 Create a new value : pointer 

pair in dynamic memory

▪ In C, use malloc

 Assign its address to the 

pointer of the tail node

 Then make the tail pointer 

point to the new node

▪ Because it is the new value at 

the end of the list

head

tail

37 NULL



 It is convenient to create a datatype to represent a 
node

 So that nodes can be passed to functions

 And created in dynamic memory as a single unit

 In C this is achieved by defining a node as a structure
 Using the keyword struct

 Structure declarations must be preceded by the 
keyword struct
 struct node x1; and not node x1;
 So use typedef to name the structure and avoid this



A node is not the same as a linked list
 It is just a single link

To create a linked list
 Write a struct for the linked list
 And functions to insert, remove and query the 

list

The linked list struct contains
 A node for the head of the list
 And, for an appendable list, a node for the tail



 It is good practice to separate the interface and 
the implementation
 By putting each in its own file
▪ The interface consists of a .h file
▪ The implementation consists of a .c file

 The .h file contains
 The struct definitions
 Function prototypes

 The .c file contains
 Function definitions 



 Assume that a project consists of
 node.h – contains the definition of a node struct
 LL.h – contains the definition of a linked list struct 

and function prototypes
 LL.c – contains the definition of the linked list 

functions listed in LL.h
 lists.c – contains a main function that tests 

linked lists

 To compile the project
 gcc –o lists lists.c LL.c





 There are two major steps
 Allocate space for the new node using malloc

▪ Assign its address to the tail node's next pointer

 Correctly maintain head and tail
▪ Head doesn't change and tail points to the new node

 But don't just consider the typical case

▪ What happens when the list is empty?

45head

tail

29 13 42 NULL

31 NULL



 Print should output the values in the list

 In order from head to tail

 Dereference all the pointers in the list

▪ head, then head->next, then head->next->next, …

 Stop when next is NULL

▪ Use a while loop

45head

tail

29 13 42 NULL

temp

45 29 13 42output:



 Very similar to print
 Traverses the list from head to tail

 Except that it returns 1 if a node's value is the same as the 
target

 Linear search
▪ On a linked list rather than an array

▪ Running time?

45head

tail

29 13 42 NULL

temp returns 1search(13):



 There are many functions we could imagine writing for 
linked lists

 Destroying the list

 Concatenating two lists

 Inserting elements at the front of the list

 Inserting elements next to some other element

 Sorting the list

 …

 An important design issue for an ADT is that it should not 
have more operations than are specified in its description

 A stack that allows insertions anywhere is not a stack



 If a function modifies a linked list then design 

for the typical case and consider

 What happens if the list is empty?

 What happens if the list consists of a single item?

 When should the head change?

 When should the tail change?

▪ If there is a tail



 Once a list is no longer needed its memory should be 
deallocated

 Using free

 There is a timing issue here

▪ You can't look at the next pointer once you've destroyed its node

 So set temp to head and set head to point to the next node

▪ And stop when head is NULL

45head

tail

29 13 42 NULL

temp





 A linked list can be defined recursively

 It is composed of its first node

 And another, slightly smaller, list

 LISP (List Processing) is a programming 

language based around lists

 The car operator refers to the first node

 The cdr operator refers to the rest of the list



 Many linked list functions can be written 
recursively

 Base case – stop if node is NULL

 Do something with the current node

 Call the function recursively on the rest of the list

 Write a function to print the contents of a list in 
reverse order

 Try writing this iteratively

 And then recursively


