


 Writing better code
 Loop invariants
 Correctness
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 Not all code is equal

 Correct and reliable code is one of our goals

 Is a new car correct or reliable?

 Other characteristics of good code

 Affordable

 Well designed

 Maintainable

 Extendable



 Code serves two purposes
 It is the precise expression of an algorithm to 

the computer

 Which follows instructions literally

 Code is the expression of an algorithm to 
another programmer

 Concerned with the problem the algorithm solves

 Note that another programmer might be you in 
the future!



 Comments in C
 /* block comments */

▪ Block comments for:  pre- / post-conditions, expected behaviours, revision 
documentation

 // inline comments

▪ Inline comments for  assertions, and / or a high-level description of algorithm, 
perhaps at a pseudocode level

 Variable naming

 Choose names to aid the understanding of code

 Naming conventions vary between codeshops

 Whitespace

 Indentation, blank lines

 Expression formatting



State requirements State specifications

Design the system

Implement the system

Test the system !

$@#&! !!



 Test bounds and extreme cases individually 
as well as “typical” cases

 Debug by

 Probing variables

 Hand-simulation

 Debugger (profiler)



 Preconditions (before)
 Conditions that must be met in order for the function 

to operate correctly
 Assertions (during)

 Conditions that must be met during execution of the 
function

 Postconditions (after)
 Conditions that will be met by the function upon 

termination of the function
 Error handling (return codes, not exceptions)



Decompose problem into:
 Pseudocode
 Functions
 Data types
 Multiple files

Build and test incrementally
 Write 500 lines and then attempt to debug?  or
 Write 25 lines and then attempt to debug? 



1. That can’t happen
2. That doesn’t happen on my machine
3. Please don’t let that happen
4. Why does that happen?

1. The other guy’s code is buggy

2. The compiler is buggy

5. Oh, I see
6. How did that ever work?





 A puzzle

 Write a program that outputs the first n cubes

▪ Without using multiplication – only addition and 
subtraction

 Why?

 CPUs are historically slow at multiplication 
compared to addition or subtraction

 The speed differences vary
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n = 10

0
1
8
27
64
125
216
345
512
729



 Calculating cubes only using addition

 For each i from 0 to n-1

▪ Compute the ith square by adding i
to itself i times

▪ Compute the ith cuibe by adding the 
ith square to itself i times

▪ Output the ith cube



int main () {
int n = 10;
for (int i = 0; i < n; i++) {

// Compute square == i*i
int square = 0;

for (int j = 0; j < i; j++) {
// Assertion: 
square += i;

}

// Compute cube = i*i*i
int cube = 0;
for (int j = 0; j < i; j++) {

cube += square;
}
printf("%d\n", cube);

}
}
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Do you believe that the value of square will 
equal i*i at the end of the loop?

What is a good assertion?

Assertions, also called loop invariants are 
usually related to the post-condition

Post-condition for square loop: square = i * i

When the loop terminates j = i

Assertion: square = j * i



 A loop invariant is a statement that is true for every 
iteration of the loop

 Usually asserted at the beginning of the loop

 Usually parametrized by the loop index
▪ j in the case of the square calculation

 A good loop invariant should capture the progress of 
the algorithm

 The invariant should carry all state information

 The invariant should imply the post condition at the end of 
the loop



 Use reasoning to capture the behavior of an 
algorithm

 State invariants at various checkpoints

 Show that the invariant is correct
▪ At the first checkpoint

▪ During execution between checkpoints

 Conclude that the post-condition holds
▪ i.e. that the invariant is correct at and after the last checkpoint

Is it true for the first step?

If its true for some arbitrary value of the 
loop control index is it true for the next?

This is mathematical induction

If so we can conclude that it is true for 
all values of the loop control variable



// …
// POST: square == i*i
int square = 0;
for (int j = 0; j < i; j++) {

// Assertion: square == j * i
square += i;

}

Initialization Maintenance Termination

true when j == 0
if true for loop j, then true for next j

true when j == i



 Initialization
 Is the invariant true on the first loop?

▪ When j == 0, square has been initialized to 0 

▪ Which satisfies square = j*i

 Maintenance
 If the invariant holds at the start of loop j, does it hold at the start of 

loop j+1?

▪ At the start of loop j, square == j*i

▪ After the loop iteration square == j*i + i == (j+1) * i, the invariant for the next loop

 Termination
 Since the invariant holds for all j, it holds after the last iteration

▪ Therefore, when j == 1, square == i * i

// POST: square == i*i
int square = 0;
for (int j = 0; j < i; j++) {

// Assertion: square == j * i
square += i;

}



 Why are we teaching you to prove correctness, ot to 
do proofs in general

 Learn to do proofs to get better at reasoning about code

 Getting practice at thinking about invariants will

 Make your code better

 Make it easier to work out what other people's code is 
intended to do

 Computers cannot verify programs

 In general this is an impossible problem



int main () {
int n = 10;
int a = 6;
int b = 1;
int c = 0;

for (int i = 0; i < n; i++) {
printf("%d\n", c);
c += b;
b += a;
a += 6;

}
}
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What does it do?

1 – simulate it on paper 

2 – type and run the program

Why is the program significant?

Hint: O Notation running time

.. not this …

https://www.youtube.com/watch?v=GmX0wRODV1A


int main () {
int n = 10;
int a = 6;
int b = 1;
int c = 0;

for (int i = 0; i < n; i++) {
// Assertion: a = 6(i+1)
// Assertion: b = 3i*(i+1)+1
// Assertion: c = i*i*i
printf("%d\n", c);
c += b;
b += a;
a += 6;

}
}
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 Initialization: When i=0:
 a = 6(0+1) = 6
 b = 3*0*(0+1)+1 = 1
 c = 03 = 0

 Maintenance: At the start of loop i:
 a = 6(i + 1)
 b = 3i(i + 1) + 1
 c = i3

 After c += b, c changes to:
 c = i3 + 3i(i + 1) + 1
 c = i3 + 3i2 + 3i + 1
 c = (i + 1)3

 After b += a, b changes to:
 b = 3i(i + 1) + 1 + 6(i + 1)
 b = (i + 1)(3i + 6) + 1
 b = 3(i + 1)(i + 2) + 1

 After a += 6, a changes to:
 a = 6(i + 1) + 6
 a =6(i + 2)

Since the assertion c = i3

holds on every loop, the
algorithm is correct

Note that (n + 1)3 − n3 = 3(n + 1)n + 1





 June 4, 1996 – launch of the Ariane5

 https://www.youtube.com/watch?v=PK_yguLapgA
 A function in the inertial reference system tried to convert 

a floating point number to a signed 16 bit integer

 The conversion resulted in a value that was out of range

 The run time error was detected in both the active and backup 
computers which both shut down

 Resulting in a loss of altitude control

 This, in turn, resulted in the rocket turning uncontrollably and 
breaking apart

 The breakup of the rocket was detected by an on-board monitor

 Explosive charges were then detonated to destroy the rocket in 
the air

https://www.youtube.com/watch?v=PK_yguLapgA




 1999 MCO was lost just as it entered Mars orbit

 It entered Mars orbit too low and disintegrated when 
it hit the upper atmosphere

 Cost of orbiter - $330 million

 What went wrong

 Failed translation of Imperial units into Metric units in 
a segment of navigation-related mission software

 Root cause

 Systems engineering, project management, and 
communication problems



 Therac-25 was a computerized radiation therapy machine 
 Manufactured in 1982 by Atomic Energy of Canada Limited  



 The model was software-controlled by a 
PDP-11 computer 

 Previous versions were hardware- controlled

▪ With  mechanical interlocks to prevent overdose and 
used software merely for convenience

 In case of software error, cryptic codes were 
given back to the operator, such as

 “MALFUNCTION xx”, where 1 < xx < 64



 Operators were rendered insensitive to the 
errors 

 They happened often, and they were told it was 
impossible to overdose a patient 

 However, from 1985-1987, six people received 
massive overdoses of radiation 

 At least three of them died from the overdose



 Race condition often happened when 
operator entered data quickly
 Then hit the UP arrow key to correct but values 

weren’t reset properly 
 AECL never noticed quick data-entry 

 Since their testers didn’t perform the tasks on a 
daily basis 

 The problem existed in previous units
 But they had a hardware interlock mechanism to 

prevent it



 Algorithms on a computer are written in a formal 
and unambiguous programming language

 Which cannot be misinterpreted by the computer

 Modern hardware is essentially bug-free

 Therefore "computer errors" are either
▪ Programmer errors or

▪ User errors
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PEBKAC

RTFM



 Compilers

 Find syntax errors

 Warn of common bugs and suggest syntax corrections

 Beyond syntax, the compiler cannot help you fix 
your program

 It does not know what you are trying to achieve

 Code must be thoroughly tested to remove bugs
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 The more you test your program the more likely you are to 
find bugs, particularly
 Run-time errors

 Logic errors

 Infinite loops

 Your code is only as good as your tests
 Some bugs may never be discovered

 Is testing better than the proof of a loop invariant

 Types of testing
 White box

 Black box
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 We can use mathematical proofs to reason about 

algorithms

 Such as assertions and loop invariants

 Can this process be automated?

 Is there an algorithm that takes a problem description, P, 

and an algorithm, A, and determines if A solves P?

 In general – no!
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 A loop invariant is a statement that is true in every 
iteration of a loop

 Usually asserted at the beginning of the loop and

 Usually parametrized by the loop index

 A good loop invariant should indicate the progress 
of the algorithm

 The invariant should carry all state information from loop 
to loop

 The invariant should imply the post-condition at the end 
of the last iteration of the loop
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 Use mathematical reasoning to capture the behavior of 
an algorithm

 State invariants at various checkpoints

 Show that the invariant holds

▪ At the first checkpoint

▪ During execution between checkpoints

 Conclude that the post-condition holds

▪ The invariant holds at the last checkpoint

 But what if the algorithm has no loops?

 Invariants are very powerful for recursive algorithms
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Initialization

Maintenance

Termination



// PRE: x must be a +ve integer

// Function that returns the factorial of x

long long factorial(int x){

if(x <= 1){

return 1;

}

return x * factorial(x-1);

}

Factorial Definition
0! = 1
1! = 1
n! = n  (n-1)! for all n  2

Assume that the invariant
holds for any smaller case

Recursive sub-call

Assume that factorial(x-1)
correctly returns (x-1)!



// POST: returns base**exp

int power(int base, unsigned int exp){

if(exp == 0){

return 1;

}

return base * power(base, exp-1);

}

Definition of be

b0 = 1
be = b  b(e-1) for all b  0

What does the running time depend on? Assume that the recursive call
to power(base, exp-1) correctly
returns the correct valueLet n be the value of exp

T(n) = O(1) + T(n-1) when n > 0
T(0) = O(1) This is a recurrence relation



 Is there a solution to the power function with a 

faster O Notation running time?

 Use divide and conquer

 Key observation

 Can you compute result quickly if the exponent is even?

 Call power(base, exp/2) and square the result

 Remember that any smaller case is correct

 It does not have to be incrementally smaller
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// POST: returns base**exp

int power(int base, unsigned int exp){

if(exp == 0){

return 1;

}

int x = power(base, exp/2);

if(exp % 2 == 1){ //odd

return x * x * base;

}else{

return x * x;

}

}

What's the running time?
T(n) = O(1) + T(n/2) when n > 0
T(0) = O(1)

T(n) = O(log n)


