

 Writing better code
 Loop invariants
 Correctness

John Edgar 2

 Not all code is equal

 Correct and reliable code is one of our goals

 Is a new car correct or reliable?

 Other characteristics of good code

 Affordable

 Well designed

 Maintainable

 Extendable

 Code serves two purposes
 It is the precise expression of an algorithm to

the computer

 Which follows instructions literally

 Code is the expression of an algorithm to
another programmer

 Concerned with the problem the algorithm solves

 Note that another programmer might be you in
the future!

 Comments in C
 /* block comments */

▪ Block comments for: pre- / post-conditions, expected behaviours, revision
documentation

 // inline comments

▪ Inline comments for assertions, and / or a high-level description of algorithm,
perhaps at a pseudocode level

 Variable naming

 Choose names to aid the understanding of code

 Naming conventions vary between codeshops

 Whitespace

 Indentation, blank lines

 Expression formatting

State requirements State specifications

Design the system

Implement the system

Test the system !

$@#&! !!

 Test bounds and extreme cases individually
as well as “typical” cases

 Debug by

 Probing variables

 Hand-simulation

 Debugger (profiler)

 Preconditions (before)
 Conditions that must be met in order for the function

to operate correctly
 Assertions (during)

 Conditions that must be met during execution of the
function

 Postconditions (after)
 Conditions that will be met by the function upon

termination of the function
 Error handling (return codes, not exceptions)

Decompose problem into:
 Pseudocode
 Functions
 Data types
 Multiple files

Build and test incrementally
 Write 500 lines and then attempt to debug? or
 Write 25 lines and then attempt to debug?

1. That can’t happen
2. That doesn’t happen on my machine
3. Please don’t let that happen
4. Why does that happen?

1. The other guy’s code is buggy

2. The compiler is buggy

5. Oh, I see
6. How did that ever work?

 A puzzle

 Write a program that outputs the first n cubes

▪ Without using multiplication – only addition and
subtraction

 Why?

 CPUs are historically slow at multiplication
compared to addition or subtraction

 The speed differences vary

John Edgar 13

n = 10

0
1
8
27
64
125
216
345
512
729

 Calculating cubes only using addition

 For each i from 0 to n-1

▪ Compute the ith square by adding i
to itself i times

▪ Compute the ith cuibe by adding the
ith square to itself i times

▪ Output the ith cube

int main () {
int n = 10;
for (int i = 0; i < n; i++) {

// Compute square == i*i
int square = 0;

for (int j = 0; j < i; j++) {
// Assertion:
square += i;

}

// Compute cube = i*i*i
int cube = 0;
for (int j = 0; j < i; j++) {

cube += square;
}
printf("%d\n", cube);

}
}

John Edgar 15

Do you believe that the value of square will
equal i*i at the end of the loop?

What is a good assertion?

Assertions, also called loop invariants are
usually related to the post-condition

Post-condition for square loop: square = i * i

When the loop terminates j = i

Assertion: square = j * i

 A loop invariant is a statement that is true for every
iteration of the loop

 Usually asserted at the beginning of the loop

 Usually parametrized by the loop index
▪ j in the case of the square calculation

 A good loop invariant should capture the progress of
the algorithm

 The invariant should carry all state information

 The invariant should imply the post condition at the end of
the loop

 Use reasoning to capture the behavior of an
algorithm

 State invariants at various checkpoints

 Show that the invariant is correct
▪ At the first checkpoint

▪ During execution between checkpoints

 Conclude that the post-condition holds
▪ i.e. that the invariant is correct at and after the last checkpoint

Is it true for the first step?

If its true for some arbitrary value of the
loop control index is it true for the next?

This is mathematical induction

If so we can conclude that it is true for
all values of the loop control variable

// …
// POST: square == i*i
int square = 0;
for (int j = 0; j < i; j++) {

// Assertion: square == j * i
square += i;

}

Initialization Maintenance Termination

true when j == 0
if true for loop j, then true for next j

true when j == i

 Initialization
 Is the invariant true on the first loop?

▪ When j == 0, square has been initialized to 0

▪ Which satisfies square = j*i

 Maintenance
 If the invariant holds at the start of loop j, does it hold at the start of

loop j+1?

▪ At the start of loop j, square == j*i

▪ After the loop iteration square == j*i + i == (j+1) * i, the invariant for the next loop

 Termination
 Since the invariant holds for all j, it holds after the last iteration

▪ Therefore, when j == 1, square == i * i

// POST: square == i*i
int square = 0;
for (int j = 0; j < i; j++) {

// Assertion: square == j * i
square += i;

}

 Why are we teaching you to prove correctness, ot to
do proofs in general

 Learn to do proofs to get better at reasoning about code

 Getting practice at thinking about invariants will

 Make your code better

 Make it easier to work out what other people's code is
intended to do

 Computers cannot verify programs

 In general this is an impossible problem

int main () {
int n = 10;
int a = 6;
int b = 1;
int c = 0;

for (int i = 0; i < n; i++) {
printf("%d\n", c);
c += b;
b += a;
a += 6;

}
}

John Edgar 21

What does it do?

1 – simulate it on paper

2 – type and run the program

Why is the program significant?

Hint: O Notation running time

.. not this …

https://www.youtube.com/watch?v=GmX0wRODV1A

int main () {
int n = 10;
int a = 6;
int b = 1;
int c = 0;

for (int i = 0; i < n; i++) {
// Assertion: a = 6(i+1)
// Assertion: b = 3i*(i+1)+1
// Assertion: c = i*i*i
printf("%d\n", c);
c += b;
b += a;
a += 6;

}
}

John Edgar 22

 Initialization: When i=0:
 a = 6(0+1) = 6
 b = 3*0*(0+1)+1 = 1
 c = 03 = 0

 Maintenance: At the start of loop i:
 a = 6(i + 1)
 b = 3i(i + 1) + 1
 c = i3

 After c += b, c changes to:
 c = i3 + 3i(i + 1) + 1
 c = i3 + 3i2 + 3i + 1
 c = (i + 1)3

 After b += a, b changes to:
 b = 3i(i + 1) + 1 + 6(i + 1)
 b = (i + 1)(3i + 6) + 1
 b = 3(i + 1)(i + 2) + 1

 After a += 6, a changes to:
 a = 6(i + 1) + 6
 a =6(i + 2)

Since the assertion c = i3

holds on every loop, the
algorithm is correct

Note that (n + 1)3 − n3 = 3(n + 1)n + 1

 June 4, 1996 – launch of the Ariane5

 https://www.youtube.com/watch?v=PK_yguLapgA
 A function in the inertial reference system tried to convert

a floating point number to a signed 16 bit integer

 The conversion resulted in a value that was out of range

 The run time error was detected in both the active and backup
computers which both shut down

 Resulting in a loss of altitude control

 This, in turn, resulted in the rocket turning uncontrollably and
breaking apart

 The breakup of the rocket was detected by an on-board monitor

 Explosive charges were then detonated to destroy the rocket in
the air

https://www.youtube.com/watch?v=PK_yguLapgA

 1999 MCO was lost just as it entered Mars orbit

 It entered Mars orbit too low and disintegrated when
it hit the upper atmosphere

 Cost of orbiter - $330 million

 What went wrong

 Failed translation of Imperial units into Metric units in
a segment of navigation-related mission software

 Root cause

 Systems engineering, project management, and
communication problems

 Therac-25 was a computerized radiation therapy machine
 Manufactured in 1982 by Atomic Energy of Canada Limited

 The model was software-controlled by a
PDP-11 computer

 Previous versions were hardware- controlled

▪ With mechanical interlocks to prevent overdose and
used software merely for convenience

 In case of software error, cryptic codes were
given back to the operator, such as

 “MALFUNCTION xx”, where 1 < xx < 64

 Operators were rendered insensitive to the
errors

 They happened often, and they were told it was
impossible to overdose a patient

 However, from 1985-1987, six people received
massive overdoses of radiation

 At least three of them died from the overdose

 Race condition often happened when
operator entered data quickly
 Then hit the UP arrow key to correct but values

weren’t reset properly
 AECL never noticed quick data-entry

 Since their testers didn’t perform the tasks on a
daily basis

 The problem existed in previous units
 But they had a hardware interlock mechanism to

prevent it

 Algorithms on a computer are written in a formal
and unambiguous programming language

 Which cannot be misinterpreted by the computer

 Modern hardware is essentially bug-free

 Therefore "computer errors" are either
▪ Programmer errors or

▪ User errors

John Edgar 31

PEBKAC

RTFM

 Compilers

 Find syntax errors

 Warn of common bugs and suggest syntax corrections

 Beyond syntax, the compiler cannot help you fix
your program

 It does not know what you are trying to achieve

 Code must be thoroughly tested to remove bugs

John Edgar 32

 The more you test your program the more likely you are to
find bugs, particularly
 Run-time errors

 Logic errors

 Infinite loops

 Your code is only as good as your tests
 Some bugs may never be discovered

 Is testing better than the proof of a loop invariant

 Types of testing
 White box

 Black box

John Edgar 33

 We can use mathematical proofs to reason about

algorithms

 Such as assertions and loop invariants

 Can this process be automated?

 Is there an algorithm that takes a problem description, P,

and an algorithm, A, and determines if A solves P?

 In general – no!

John Edgar 34

 A loop invariant is a statement that is true in every
iteration of a loop

 Usually asserted at the beginning of the loop and

 Usually parametrized by the loop index

 A good loop invariant should indicate the progress
of the algorithm

 The invariant should carry all state information from loop
to loop

 The invariant should imply the post-condition at the end
of the last iteration of the loop

John Edgar 35

 Use mathematical reasoning to capture the behavior of
an algorithm

 State invariants at various checkpoints

 Show that the invariant holds

▪ At the first checkpoint

▪ During execution between checkpoints

 Conclude that the post-condition holds

▪ The invariant holds at the last checkpoint

 But what if the algorithm has no loops?

 Invariants are very powerful for recursive algorithms

John Edgar 36

Initialization

Maintenance

Termination

// PRE: x must be a +ve integer

// Function that returns the factorial of x

long long factorial(int x){

if(x <= 1){

return 1;

}

return x * factorial(x-1);

}

Factorial Definition
0! = 1
1! = 1
n! = n (n-1)! for all n 2

Assume that the invariant
holds for any smaller case

Recursive sub-call

Assume that factorial(x-1)
correctly returns (x-1)!

// POST: returns base**exp

int power(int base, unsigned int exp){

if(exp == 0){

return 1;

}

return base * power(base, exp-1);

}

Definition of be

b0 = 1
be = b b(e-1) for all b 0

What does the running time depend on? Assume that the recursive call
to power(base, exp-1) correctly
returns the correct valueLet n be the value of exp

T(n) = O(1) + T(n-1) when n > 0
T(0) = O(1) This is a recurrence relation

 Is there a solution to the power function with a

faster O Notation running time?

 Use divide and conquer

 Key observation

 Can you compute result quickly if the exponent is even?

 Call power(base, exp/2) and square the result

 Remember that any smaller case is correct

 It does not have to be incrementally smaller

John Edgar 39

// POST: returns base**exp

int power(int base, unsigned int exp){

if(exp == 0){

return 1;

}

int x = power(base, exp/2);

if(exp % 2 == 1){ //odd

return x * x * base;

}else{

return x * x;

}

}

What's the running time?
T(n) = O(1) + T(n/2) when n > 0
T(0) = O(1)

T(n) = O(log n)

