

 Call stack
 Recursion
 Analyze searching algorithms

 Linear search

 Binary search

John Edgar 2

 A stack is an ordered collection of items

 Items can be inserted at the top

▪ Referred to as pushing

 And removed from the top

▪ Referred to as popping

 Stacks are last-in-first-out (LIFO)

 Like a stack of weight plates

 Or books

John Edgar 4

i.e. the order is retained, it
does not mean that it is sorted

delicious but not the
same sort of stack …

 Function calls are processed in LIFO order
 When a function completes, control returns to the function

that called it
▪ Referred to as the calling function

 Function calls are characterized by four things
 Parameters

 Local variables

 Return value

 Return address
 These four things are maintained on a call stack

 Each function call is pushed onto or popped from a stack
frame

John Edgar 5

max
parameters
i 5
j 9

max
parameters
i 9
j 9

int max(int i, int j) {
if (i < j) {

i = j;
}
return i;

}

int maxN(int arr[], int n) {
int highest = arr[0];
for (int i = 1; i < n; i++) {

highest = max(highest, arr[i]);
}
return highest;

}

int main () {
int arr[10] = {5, 9, 4, 2, 3, 11, 4, 1, 0, 4};
printf("Highest value: %d\n", maxN(arr, 10));
return 0;

}

John Edgar 6

main
local variables
arr = {5, …, 4}

maxN
parameters
arr ?
n 10
local variables
best 9
i 1

called repeatedly with each
element in arr from 1 to n-1

9

11

 We've seen while loops and for loops – two
methods of performing repetition

 There is another way to repeat a process

▪ That uses function calling instead of loops

 Consider computing factorials

 Note that the factorial of 5 = 5 *4!

▪ Let`s state this more generally

 The factorial of x = x * (x - 1)!

 And the factorial of 1 = 1

 Let's write a C function to compute factorials
using the ideas presented previously

 x! = x * (x - 1)! and 1! = 1

// PRE: x must be a +ve integer

// Function that returns the factorial of x

long long factorial(int x){

if(x <= 1)

{

return 1;

}else{

return x * factorial(x-1);

}

}

does this work?

void recursionTest()

{

int x = 10;

printf("%d! = %lld", x, fact4(x));

}

incidentally, in case you were
wondering why factorial
returned a long long, here is 20!

 The factorial function is recursive

 A recursive function calls itself

 Each call to a recursive function results in a separate call to
the function, with its own input

 Recursive functions are just like other functions

 The invocation is pushed onto the call stack

 And removed from the call stack when the end of the
function or a return statement is reached

 Execution returns to the previous function call

 main is also a function

 Running a C program is the same thing as making a function
call to main(…)

 The command shell calls main and

 The return value is sent back to the command shell

 Main can take arguments

 int main(int argc, char* argv[]) { … }

 argv is an array of strings of size argc
▪ Any string arguments typed after the program invocation are stored

in argv

 Stack memory is sequential
 Stack memory is released when a function

terminates

 Pointers to local variables in a released function should not
be returned

 Memory assigned to variables on the stack cannot
grow or shrink

 Since everything above them on the stack would have to be
moved to make room for them

 Use dynamic memory instead

 It is often useful to find out whether or not a
list contains a particular item

 What's Bob's phone number?

 What grade did Kate get in assignment 1?

 Two possible specifications of return values

 True or false

 Or the position of the item in the list

▪ -1 for failure

John Edgar 14

 The organization of the input can make a big
difference to the efficiency of a search

 Is the input sorted?

 Use binary search

 Is the data stored in a data structure that makes
searching efficient?

 Binary search tree

 Hash table

 If none of the above use linear search

John Edgar 15

 Start with the first item

 Iterate through the array one element at a time

 Until a match is found

▪ Return true or the index of the match

 Or all elements have been checked

▪ Return false or -1

John Edgar 16

John Edgar 17

int linearSearch(int arr[], int n, int target){
repeat for i = 0 to n-1

check the next element, arr[i]
Algorithm:

if equal to target return true or index

target not found so return false or -1
}

int linearSearch(int arr[], int n, int target){
for (int i=0; i < n; i++){

if(arr[i] == target){
return i;

}
} //for
return -1; //target not found

}

John Edgar 18

The function returns as soon as
the target item is found

return -1 to indicate that the
target has not been found

 Search an array of n items
 The barometer instruction is equality checking (or

comparisons for short)

 arr[i] == target;

 There are actually two other barometer instructions
▪ What are they?

 How many comparisons does linear search perform?

John Edgar 19

int linearSearch(int arr[], int n, int target){
for (int i=0; i < n; i++){

if(arr[i] == target){
return i;

}
} //for
return -1; //target not found

}

 Best case

 The target is the first element of the array

 Make 1 comparison

 Worst case

 The target is not in the array or

 The target is at the last position in the array

 Make n comparisons in either case

 Average case

 Is it (best case + worst case) / 2, i.e. (n + 1) / 2?

John Edgar 20

 Comparisons are relatively expensive
elementary operations

 Use a sentinel value to cut the number of
comparisons in half

 The O notation running time is unchanged

 Still O(n)

 But the leading constant is halved

John Edgar 21

int linearSearch(int arr[], int n, int target){
arr[n] = target;
int i = 0;
while(arr[i] != target){

i++;
} //while
if (i != n){

return i;
}
return -1;

}

John Edgar 22

this is an error but is
conceptually correct

 Remember that leading constants don't
matter for Big O comparisons

 They don't matter when comparing two
algorithms with different Big O running times

 But they do matter when two algorithms
have the same Big O growth rate

 Optimized vs. un-optimized algorithm

 Fast vs. slow machine running the same algorithm

John Edgar 23

 If we sort the target array first we can make the
linear search average cost around n / 2

 Once a value equal to or greater than the target is found
the search can end

▪ So, if a sequence contains 8 items, on average, linear
search compares 4 of them,

▪ If a sequence contains 1,000,000 items, linear search
compares 500,000 of them, etc.

 However, if the array is sorted, it is possible to do
much better than this by using binary search

John Edgar 24

 Searching can be performed much more efficiently
if the array is sorted

 For unsorted arrays we must use linear search

 For sorted arrays we can use binary search

 Binary search is a divide and conquer algorithm
 Divide

 Cut the array into 2 (or more) roughly equal sized pieces

 Conquer

 Use what you know about the pieces to solve the problem

John Edgar 26

 Binary search examines the central element of the
array

 If this value is greater than the target then the target
must be in the lower half of the array

 If it is less than the target then the target must be in the
upper half of the array

 If it is equal to the target then return true

 Repeat the process with the central element of the
candidate sub-array

 Until the target is found or no candidates are left

John Edgar 27

 Pre-condition

 Array must be sorted

 It is necessary to keep track of which sub-array is
to be searched

 Use integer variables for indexes

 Identify the candidate sub-array with first and last indexes

 The midpoint is (first + last) / 2
▪ Note that integer division deals with sub-arrays of even size

John Edgar 28

John Edgar 29

int binSearch(int arr[], int n, int target){
search sub-array arr[first … last]
while not empty

compare middle element to target
Algorithm:

return true if middle element equal to target
exclude last half if target < middle element
exclude first half if target > middle element

no candidates so return false
}

 In the best case the target is the midpoint
element of the array

 Requiring one iteration of the while loop

John Edgar 30

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid = (0 + 7) / 2 = 3

binary search (arr, 11)

 What is the worst case for binary search?

 Either the target is not in the array, or

 It is found when the search space consists of one
element

 How many times does the while loop iterate
in the worst case?

John Edgar 31

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid =

binary search (arr, 20)

(0 + 7) / 2 = 3 (4 + 7) / 2 = 5 (6 + 7) / 2 = 6 20 != 23

int binarySearch(int arr[], int n, int target){
int first = 0;
int last = n - 1;
int mid = 0;
while (first <= last){

mid = (first + last) / 2;
if(target == arr[mid]){

return mid;
} else if(target > arr[mid]){

first = mid + 1;
} else { //target < arr[mid]

last = mid - 1;
}

} //while
return -1; //target not found

}
John Edgar 32

 The algorithm consists of three parts

 Initialization (setting first and last)

 While loop including a return statement on success

 Return statement which executes when on failure

 Initialization and return on failure require the same
amount of work regardless of input size

 The number of times that the while loop iterates
depends on the size of the input

John Edgar 33

 The while loop contains an if, else if, else statement
 The first if condition is met when the target is found

 And is therefore performed at most once each time the
algorithm is run

 The algorithm usually performs 5 operations for each
iteration of the while loop

 Checking the while condition

 Assignment to mid

 Equality comparison with target

 Inequality comparison

 One other operation (setting either first or last)

John Edgar 34

The barometer
instructions

 Each iteration of the while loop halves the search space

 For simplicity assume that n is a power of 2

▪ So n = 2k (e.g. if n = 128, k = 7)

 How large is the search space?

 After the first iteration the search space is halved to n/2

 After the second iteration the search space is n/4

 After the kth iteration the search space consists of just one
element, since n/2k = n/n = 1

▪ Because n = 2k, k = log2n

 Therefore at most log2n +1 iterations of the while loop are made
in the worst case

John Edgar 35

O(log n)

 Observation

 The target value is only equal to an array element at most
once
▪ As the algorithm then returns true

 This means that the first comparison in the if statement is
usually false
▪ Necessitating a second comparison to determine which sub-array

search

 Solution

 Re-order the if statement to do less work in the loop

John Edgar 36

int binarySearch(int arr[], int n, int target){
int first = 0;
int last = size - 1;
int mid = 0;
while (first <= last){

mid = (first + last) / 2;
if(target > arr[mid]){

first = mid + 1;
} else if(target < arr[mid]){

last = mid - 1;
} else { //target == arr[mid]

return mid;
}

} //while
return -1; //target not found

}
John Edgar 37

int binarySearch(arr[], int n, int target){
if(n <= 0){

return 0;
}
int mid = n / 2;
if(arr[mid] == target){

return 1;
} else if(target < arr[mid]){

return binarySearch(arr, mid, target);
} else { //target > arr[mid]

return binarySearch(arr+mid+1, n-mid-1, target);
}

}

John Edgar 38

John Edgar 39

n 3 + 4n 4 + 8log2(n)

3 15 17

10 43 31

100 403 57

1,000 4,003 84

10,000 40,003 111

100,000 400,003 137

1,000,000 4,000,003 164

10,000,000 40,000,003 191

 Binary search is much faster than linear search but

 It is harder to code

 The array has to be sorted
 Keeping an array sorted can be expensive

 If there is a lot more searching than updating
▪ Keep the array sorted (slow) and use binary search (fast)

 If there is a lot more updating than searching
▪ Don't sort the array (fast) and use linear search (slow)

 Or … don't use an array

John Edgar 40

