Searching

Objectives

Call stack
Recursion
Analyze searching algorithms

Linear search
Binary search

John Edgar 2

Call Stack

Stacks

A stack is an ordered collection of items

i.e. the order is retained, it

tems can be inserted at the top does not mean that it is sorted

Referred to as pushing

And removed from the top

Referred to as popping
Stacks are last-in-first-out (LIFO)

Like a stack of weight plates
Or books

delicious but not the | ‘
same sort of stack ... | —u%

John Edgar 4

Function Calls

Function calls are processed in LIFO order

When a function completes, control returns to the function
that called it

Referred to as the calling function
Function calls are characterized by four things

Parameters
L ocal variables
Return value

Return address
These four things are maintained on a call stack

Each function call is pushed onto or popped from a stack
frame

John Edgar 5

Functions Calling Functions

int max(int i, int j) {

if (1 < 3J) |

i=73; called repeatedly with each
} element in arr from 1to n-1
return 1i;

}

int maxN(int arr[], int n) {
int highest = arr[0];
for (int 1 = 1; i < n; i++) {
highest = max(highest, arr[i]);
}

return highest;

}

int main () {
int arr[10] = {5, 9, 4, 2, 3, 11, 4, 1, 0, 4};
printf("Highest value: %d\n", maxN(arr, 10));
return 0;

}

John Edgar

parameters

i 9
J 9
parameters

arr ?
n 10
local variables
best 9
[1

local variables
arr =1{5, ..., 4}

More Repetition

We've seen while loops and for loops — two
methods of performing repetition
There is another way to repeat a process

That uses function calling instead of loops
Consider computing factorials

Note that the factorial of 5 =5 *4!

Let's state this more generally
The factorial of x=x* (x - 1)!
And the factorial of 1 =1

Recursive Factorial

Let's write a C function to compute factorials
using the ideas presented previously

xX'=x*(x-1)land 1! =1

// PRE: x must be a +ve integer
// Function that returns the factorial of x
long long factorial (int x) {

if(x <= 1) does this work?

{

return 1;
}else(

return x * factorial (x-1);

}

Testing Factorial

void recursionTest ()

{
int x = 10;
printf ("3sd! = $11d", x, factd(x))
} C:\Windows\system32\cmd.exe l = |-= |—S§-J‘

10! = 3628800 2

4 1} »

incidentally, in case you were
wondering why factorial

returned a long long, here is 20! (& CAWindons\system3Z\emd.ons R

20! = 2432902008176640000
INT_MAX = 2147483647

Recursive Functions

The factorial function is recursive
A recursive function calls itself

Each call to a recursive function results in a separate call to
the function, with its own input

Recursive functions are just like other functions
The invocation is pushed onto the call stack

And removed from the call stack when the end of the
function or a return statement is reached

Execution returns to the previous function call

Main Function

main is also a function
Running a C program is the same thing as making a function
call to main(....)
The command shell calls main and
The return value is sent back to the command shell
Main can take arguments
int main(int argc, char* argv[]) { .. }

argv is an array of strings of size argc

Any string arguments typed after the program invocation are stored
inargv

Stack Variables

Stack memory is sequential
Stack memory is released when a function
terminates

Pointers to local variables in a released function should not
be returned

Memory assigned to variables on the stack cannot
grow or shrink

Since everything above them on the stack would have to be
moved to make room for them

Use dynamic memory instead

Linear Search

Searching

It is often useful to find out whether or not a
list contains a particular item
What's Bob's phone number?

What grade did Kate get in assignment 17
Two possible specifications of return values

True or false
Or the position of the item in the list

-1 for failure

John Edgar 14

Input Organization

The organization of the input can make a big
difference to the efficiency of a search
Is the input sorted?

Use binary search
Is the data stored in a data structure that makes
searching efficient?

Binary search tree

Hash table
If none of the above use linear search

John Edgar

Linear Search

Start with the first item
Iterate through the array one element at a time
Until a match is found

Return true or the index of the match

Or all elements have been checked

Return false or -1

John Edgar 16

Linear Search

int linearSearch(int arr[], int n, int target){
repeat for 1 = 0 to n-1
check the next element, arr[i]
Algorithm:
if equal to target return true or index

target not found so return false or -1

¥

John Edgar 17

Linear Search

int linearSearch(int arr[], int n, int target){
for (int i=0; i < n; i++){
if(arr[i] == target){

return i; - The function returns as soon as
} the target item is found

} //for
return -1; //target not found

return -1 to indicate that the
target has not been found

John Edgar 18

Barometer Instruction

Search an array of n items
The barometer instruction is equality checking (or
comparisons for short)

arr[i] == target;

There are actually two other barometer instructions
What are they?

How many comparisons does linear search perform?

int linearSearch(int arr[], int n, int target){
for (int i=0; i < n; i++){
if(arr[i] == target){
return 1i;
}
} //for
return -1; //target not found

John Edgar 19

Linear Search Comparisons

Best case
The target is the first element of the array

Make 1 comparison
Worst case

The targetis not in the array or
The target is at the last position in the array

Make n comparisons in either case
Average case

s it (best case + worst case) [2,i.e.(n+1)/2?

John Edgar

20

Improving Linear Search

Comparisons are relatively expensive
elementary operations

Use a sentinel value to cut the number of
comparisons in half

The O notation running time is unchanged
Still O(n)
But the leading constant is halved

John Edgar

Improved Linear Search

int linearSearch(int arr[], int n, int target){

arr[n] = target; this is an error but is
int 1 = 9; conceptually correct

while(arr[i] != target){
1++;

} //while

if (i !'= n){
return 1;

¥

return -1;

¥

John Edgar 22

Improved Linear Search Discussion

Remember that leading constants don't
matter for Big O comparisons

They don't matter when comparing two
algorithms with different Big O running times

But they do matter when two algorithms
have the same Big O growth rate

Optimized vs. un-optimized algorithm
Fast vs. slow machine running the same algorithm

John Edgar

Searching Sorted Arrays

If we sort the target array first we can make the
linear search average cost around n/ 2

Once a value equal to or greater than the target is found
the search can end

So, if a sequence contains 8 items, on average, linear
search compares 4 of them,

If a sequence contains 1,000,000 items, linear search
compares 500,000 of them, etc.

However, if the array is sorted, it is possible to do
much better than this by using binary search

John Edgar 24

Binary Search

Divide and Conquer

Searching can be performed much more efficiently
if the array is sorted

For unsorted arrays we must use linear search

For sorted arrays we can use binary search
Binary search is a divide and conquer algorithm
Divide

Cut the array into 2 (or more) roughly equal sized pieces
Conquer

Use what you know about the pieces to solve the problem

John Edgar 26

Binary Search

Binary search examines the central element of the
array

If this value is greater than the target then the target
must be in the lower half of the array

If it is less than the target then the target must be in the
upper half of the array

If it is equal to the target then return true
Repeat the process with the central element of the

candidate sub-array

Until the target is found or no candidates are left

John Edgar 27

Binary Search Notes

Pre-condition

Array must be sorted
It is necessary to keep track of which sub-array is
to be searched

Use integer variables for indexes

Identify the candidate sub-array with first and last indexes

The midpoint is (first + last) [2
Note that integer division deals with sub-arrays of even size

John Edgar 28

Binary Search Algorithm

int binSearch(int arr[], int n, int target){
search sub-array arr[first .. last]
while not empty

compare middle element to target

Algorithm:
return true if middle element equal to target
exclude last half if target < middle element
exclude first half if target > middle element

no candidates so return false

John Edgar 29

Best Case

In the best case the target is the midpoint
element of the array

Requiring one iteration of the while loop

binary search (arr, 11)

arr 1 3 7 11 13 17 19 23

mid=(0+7)/2=3

John Edgar 30

Worst Case

What is the worst case for binary search?
Either the target is notin the array, or

It is found when the search space consists of one
element
How many times does the while loop iterate

in the worst case?

binary search (arr, 20)

:

arr 1 3 7 11 13 17 19 23

mid= (0+7)/2=3 (4+7)/2=5 (6+7)/2=6 20!=23

John Edgar 31

Binary Search inC

int binarySearch(int arr[], int n, int target){
int first = 0;
int last = n - 1;
int mid = ©;
while (first <= last){
mid = (first + last) / 2;
if(target == arr[mid]){
return mid;
} else if(target > arr[mid]){
first = mid + 1;
} else { //target < arr[mid]
last = mid - 1;
}
} //while
return -1; //target not found

¥

John Edgar 32

Analyzing Binary Search

The algorithm consists of three parts

Initialization (setting first and last)
While loop including a return statement on success

Return statement which executes when on failure
Initialization and return on failure require the same

amount of work regardless of input size
The number of times that the while loop iterates

depends on the size of the input

John Edgar 33

Binary Search Iteration

The while loop contains an if, else if, else statement
The first if condition is met when the target is found

And is therefore performed at most once each time the
algorithm is run

The algorithm usually performs 5 operations for each
iteration of the while loop

Checking the while condition

Assignment to mid The barometer
Equality comparison with target Instructions
Inequality comparison

One other operation (setting either first or last)

John Edgar 34

Analyzing the Worst Case

Each iteration of the while loop halves the search space

For simplicity assume that nis a power of 2
Son=2¢(e.qg.ifn=128, k=7)

How large is the search space?

John Edgar

After the first iteration the search space is halved to n/2
After the second iteration the search space is n/4

After the k™" iteration the search space consists of just one
element, since n/2k=n/n=1
Because n = 2% k=log,n

Therefore at most log,n +1 iterations of the while loop are made

in the worst case O(log n)

35

Improving Binary Search

Observation

The target value is only equal to an array element at most
once
As the algorithm then returns true

This means that the first comparison in the if statement is
usually false

Necessitating a second comparison to determine which sub-array
search

Solution
Re-order the if statement to do less work in the loop

John Edgar 36

Improved Binary Search

int binarySearch(int arr[], int n, int target){
int first = 0;
int last = size - 1;
int mid = ©;
while (first <= last){
mid = (first + last) / 2;
if(target > arr[mid]){
first = mid + 1;
} else if(target < arr[mid]){
last = mid - 1;
} else { //target == arr[mid]
return mid;
}
} //while
return -1; //target not found

¥

John Edgar 37

Recursive Binary Search

int binarySearch(arr[], int n, int target)({
if(n <= 0){
return O;
}
int mid = n / 2;
if(arr[mid] == target){
return 1;
} else if(target < arr[mid]){
return binarySearch(arr, mid, target);
} else { //target > arr[mid]
return binarySearch(arr+mid+l, n-mid-1, target);

¥

John Edgar 38

Binary Search vs Linear Search

n

3

10

100

1,000
10,000
100,000
1,000,000
10,000,000

John Edgar

3+4n 4 +8log (n)

15 _ 17

43 31

403 57

4,003 84
40,003 111
400,003 137
4,000,003 164
40,000,003 191

39

Linear Search vs Binary Search

Binary search is much faster than linear search but

It is harder to code

The array has to be sorted
Keeping an array sorted can be expensive

If there is a lot more searching than updating
Keep the array sorted (slow) and use binary search (fast)

If there is a lot more updating than searching
Don't sort the array (fast) and use linear search (slow)

Or ... don't use an array

John Edgar 40

