

 Call stack
 Recursion
 Analyze searching algorithms

 Linear search

 Binary search

John Edgar 2

 A stack is an ordered collection of items

 Items can be inserted at the top

▪ Referred to as pushing

 And removed from the top

▪ Referred to as popping

 Stacks are last-in-first-out (LIFO)

 Like a stack of weight plates

 Or books

John Edgar 4

i.e. the order is retained, it
does not mean that it is sorted

delicious but not the
same sort of stack …

 Function calls are processed in LIFO order
 When a function completes, control returns to the function

that called it
▪ Referred to as the calling function

 Function calls are characterized by four things
 Parameters

 Local variables

 Return value

 Return address
 These four things are maintained on a call stack

 Each function call is pushed onto or popped from a stack
frame

John Edgar 5

max
parameters
i 5
j 9

max
parameters
i 9
j 9

int max(int i, int j) {
if (i < j) {

i = j;
}
return i;

}

int maxN(int arr[], int n) {
int highest = arr[0];
for (int i = 1; i < n; i++) {

highest = max(highest, arr[i]);
}
return highest;

}

int main () {
int arr[10] = {5, 9, 4, 2, 3, 11, 4, 1, 0, 4};
printf("Highest value: %d\n", maxN(arr, 10));
return 0;

}

John Edgar 6

main
local variables
arr = {5, …, 4}

maxN
parameters
arr ?
n 10
local variables
best 9
i 1

called repeatedly with each
element in arr from 1 to n-1

9

11

 We've seen while loops and for loops – two
methods of performing repetition

 There is another way to repeat a process

▪ That uses function calling instead of loops

 Consider computing factorials

 Note that the factorial of 5 = 5 *4!

▪ Let`s state this more generally

 The factorial of x = x * (x - 1)!

 And the factorial of 1 = 1

 Let's write a C function to compute factorials
using the ideas presented previously

 x! = x * (x - 1)! and 1! = 1

// PRE: x must be a +ve integer

// Function that returns the factorial of x

long long factorial(int x){

if(x <= 1)

{

return 1;

}else{

return x * factorial(x-1);

}

}

does this work?

void recursionTest()

{

int x = 10;

printf("%d! = %lld", x, fact4(x));

}

incidentally, in case you were
wondering why factorial
returned a long long, here is 20!

 The factorial function is recursive

 A recursive function calls itself

 Each call to a recursive function results in a separate call to
the function, with its own input

 Recursive functions are just like other functions

 The invocation is pushed onto the call stack

 And removed from the call stack when the end of the
function or a return statement is reached

 Execution returns to the previous function call

 main is also a function

 Running a C program is the same thing as making a function
call to main(…)

 The command shell calls main and

 The return value is sent back to the command shell

 Main can take arguments

 int main(int argc, char* argv[]) { … }

 argv is an array of strings of size argc
▪ Any string arguments typed after the program invocation are stored

in argv

 Stack memory is sequential
 Stack memory is released when a function

terminates

 Pointers to local variables in a released function should not
be returned

 Memory assigned to variables on the stack cannot
grow or shrink

 Since everything above them on the stack would have to be
moved to make room for them

 Use dynamic memory instead

 It is often useful to find out whether or not a
list contains a particular item

 What's Bob's phone number?

 What grade did Kate get in assignment 1?

 Two possible specifications of return values

 True or false

 Or the position of the item in the list

▪ -1 for failure

John Edgar 14

 The organization of the input can make a big
difference to the efficiency of a search

 Is the input sorted?

 Use binary search

 Is the data stored in a data structure that makes
searching efficient?

 Binary search tree

 Hash table

 If none of the above use linear search

John Edgar 15

 Start with the first item

 Iterate through the array one element at a time

 Until a match is found

▪ Return true or the index of the match

 Or all elements have been checked

▪ Return false or -1

John Edgar 16

John Edgar 17

int linearSearch(int arr[], int n, int target){
repeat for i = 0 to n-1

check the next element, arr[i]
Algorithm:

if equal to target return true or index

target not found so return false or -1
}

int linearSearch(int arr[], int n, int target){
for (int i=0; i < n; i++){

if(arr[i] == target){
return i;

}
} //for
return -1; //target not found

}

John Edgar 18

The function returns as soon as
the target item is found

return -1 to indicate that the
target has not been found

 Search an array of n items
 The barometer instruction is equality checking (or

comparisons for short)

 arr[i] == target;

 There are actually two other barometer instructions
▪ What are they?

 How many comparisons does linear search perform?

John Edgar 19

int linearSearch(int arr[], int n, int target){
for (int i=0; i < n; i++){

if(arr[i] == target){
return i;

}
} //for
return -1; //target not found

}

 Best case

 The target is the first element of the array

 Make 1 comparison

 Worst case

 The target is not in the array or

 The target is at the last position in the array

 Make n comparisons in either case

 Average case

 Is it (best case + worst case) / 2, i.e. (n + 1) / 2?

John Edgar 20

 Comparisons are relatively expensive
elementary operations

 Use a sentinel value to cut the number of
comparisons in half

 The O notation running time is unchanged

 Still O(n)

 But the leading constant is halved

John Edgar 21

int linearSearch(int arr[], int n, int target){
arr[n] = target;
int i = 0;
while(arr[i] != target){

i++;
} //while
if (i != n){

return i;
}
return -1;

}

John Edgar 22

this is an error but is
conceptually correct

 Remember that leading constants don't
matter for Big O comparisons

 They don't matter when comparing two
algorithms with different Big O running times

 But they do matter when two algorithms
have the same Big O growth rate

 Optimized vs. un-optimized algorithm

 Fast vs. slow machine running the same algorithm

John Edgar 23

 If we sort the target array first we can make the
linear search average cost around n / 2

 Once a value equal to or greater than the target is found
the search can end

▪ So, if a sequence contains 8 items, on average, linear
search compares 4 of them,

▪ If a sequence contains 1,000,000 items, linear search
compares 500,000 of them, etc.

 However, if the array is sorted, it is possible to do
much better than this by using binary search

John Edgar 24

 Searching can be performed much more efficiently
if the array is sorted

 For unsorted arrays we must use linear search

 For sorted arrays we can use binary search

 Binary search is a divide and conquer algorithm
 Divide

 Cut the array into 2 (or more) roughly equal sized pieces

 Conquer

 Use what you know about the pieces to solve the problem

John Edgar 26

 Binary search examines the central element of the
array

 If this value is greater than the target then the target
must be in the lower half of the array

 If it is less than the target then the target must be in the
upper half of the array

 If it is equal to the target then return true

 Repeat the process with the central element of the
candidate sub-array

 Until the target is found or no candidates are left

John Edgar 27

 Pre-condition

 Array must be sorted

 It is necessary to keep track of which sub-array is
to be searched

 Use integer variables for indexes

 Identify the candidate sub-array with first and last indexes

 The midpoint is (first + last) / 2
▪ Note that integer division deals with sub-arrays of even size

John Edgar 28

John Edgar 29

int binSearch(int arr[], int n, int target){
search sub-array arr[first … last]
while not empty

compare middle element to target
Algorithm:

return true if middle element equal to target
exclude last half if target < middle element
exclude first half if target > middle element

no candidates so return false
}

 In the best case the target is the midpoint
element of the array

 Requiring one iteration of the while loop

John Edgar 30

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid = (0 + 7) / 2 = 3

binary search (arr, 11)

 What is the worst case for binary search?

 Either the target is not in the array, or

 It is found when the search space consists of one
element

 How many times does the while loop iterate
in the worst case?

John Edgar 31

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid =

binary search (arr, 20)

(0 + 7) / 2 = 3 (4 + 7) / 2 = 5 (6 + 7) / 2 = 6 20 != 23

int binarySearch(int arr[], int n, int target){
int first = 0;
int last = n - 1;
int mid = 0;
while (first <= last){

mid = (first + last) / 2;
if(target == arr[mid]){

return mid;
} else if(target > arr[mid]){

first = mid + 1;
} else { //target < arr[mid]

last = mid - 1;
}

} //while
return -1; //target not found

}
John Edgar 32

 The algorithm consists of three parts

 Initialization (setting first and last)

 While loop including a return statement on success

 Return statement which executes when on failure

 Initialization and return on failure require the same
amount of work regardless of input size

 The number of times that the while loop iterates
depends on the size of the input

John Edgar 33

 The while loop contains an if, else if, else statement
 The first if condition is met when the target is found

 And is therefore performed at most once each time the
algorithm is run

 The algorithm usually performs 5 operations for each
iteration of the while loop

 Checking the while condition

 Assignment to mid

 Equality comparison with target

 Inequality comparison

 One other operation (setting either first or last)

John Edgar 34

The barometer
instructions

 Each iteration of the while loop halves the search space

 For simplicity assume that n is a power of 2

▪ So n = 2k (e.g. if n = 128, k = 7)

 How large is the search space?

 After the first iteration the search space is halved to n/2

 After the second iteration the search space is n/4

 After the kth iteration the search space consists of just one
element, since n/2k = n/n = 1

▪ Because n = 2k, k = log2n

 Therefore at most log2n +1 iterations of the while loop are made
in the worst case

John Edgar 35

O(log n)

 Observation

 The target value is only equal to an array element at most
once
▪ As the algorithm then returns true

 This means that the first comparison in the if statement is
usually false
▪ Necessitating a second comparison to determine which sub-array

search

 Solution

 Re-order the if statement to do less work in the loop

John Edgar 36

int binarySearch(int arr[], int n, int target){
int first = 0;
int last = size - 1;
int mid = 0;
while (first <= last){

mid = (first + last) / 2;
if(target > arr[mid]){

first = mid + 1;
} else if(target < arr[mid]){

last = mid - 1;
} else { //target == arr[mid]

return mid;
}

} //while
return -1; //target not found

}
John Edgar 37

int binarySearch(arr[], int n, int target){
if(n <= 0){

return 0;
}
int mid = n / 2;
if(arr[mid] == target){

return 1;
} else if(target < arr[mid]){

return binarySearch(arr, mid, target);
} else { //target > arr[mid]

return binarySearch(arr+mid+1, n-mid-1, target);
}

}

John Edgar 38

John Edgar 39

n 3 + 4n 4 + 8log2(n)

3 15 17

10 43 31

100 403 57

1,000 4,003 84

10,000 40,003 111

100,000 400,003 137

1,000,000 4,000,003 164

10,000,000 40,000,003 191

 Binary search is much faster than linear search but

 It is harder to code

 The array has to be sorted
 Keeping an array sorted can be expensive

 If there is a lot more searching than updating
▪ Keep the array sorted (slow) and use binary search (fast)

 If there is a lot more updating than searching
▪ Don't sort the array (fast) and use linear search (slow)

 Or … don't use an array

John Edgar 40

