


 Analyze simple sorting algorithms

 Selection sort

 Insertion sort

 Assertions
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 The goal of sorting is to put a collection of items in 
order from smallest to largest

 The order depends on the type of the items

▪ Numerical value for numbers

▪ Alphabetical order for strings

 Reasons for sorting

 Sometimes useful in its own right

 Also part of other algorithms
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 As an example of algorithm analysis we will look at 
two simple sorting algorithms

 Selection Sort and

 Insertion Sort

 Calculate an approximate cost function for these 
two sorting algorithms 

 By analyzing how many operations are performed by 
each algorithm

 This will include an analysis of how many times the 
algorithms' loops iterate
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 Selection sort is a simple sorting algorithm 
that repeatedly finds the smallest item

 The array is divided into a sorted part and an 
unsorted part

 Repeatedly swaps the first unsorted item 
with the smallest unsorted item

 Starting with the element with index 0, and

 Ending with last but one element (index n – 1)
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23 41 33 81 07 19 11 45 find smallest unsorted - 7 comparisons

07 41 33 81 23 19 11 45 find smallest unsorted - 6 comparisons

07 11 33 81 23 19 41 45 find smallest unsorted - 5 comparisons

07 11 19 81 23 33 41 45 find smallest unsorted - 4 comparisons

07 11 19 23 81 33 41 45 find smallest unsorted - 3 comparisons

07 11 19 23 33 81 41 45 find smallest unsorted - 2 comparisons

07 11 19 23 33 41 81 45 find smallest unsorted - 1 comparison 

07 11 19 23 33 41 45 81
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void selectionSort(int arr[], int n){
repeat for all i from 0 to n-2

find smallest, the index of the smallest 
element of arr [i … n-1]

Algorithm: linear scan

swap the smallest element with the current item
arr[smallest]  arr[i]

}



void selectionSort(int arr[], int n){
for(int i = 0; i < n-1; ++i){

int smallest = i;
// Find the index of the smallest element
for(int j = i + 1; j < n; ++j){

if(arr[j] < arr[smallest]){
smallest = j;

}
}
// Swap the smallest with the current item
temp = arr[i];
arr[i] = arr[smallest];
arr[smallest] = temp;

}
}
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inner loop body
n(n – 1)/2 times

outer loop
n-1 times



 The barometer operation for selection sort 
must be in the inner loop

 Since operations in the inner loop are executed 
the greatest number of times

 The inner loop contains four operations

 Compare j to array length

 Compare arr[j] to smallest

 Change smallest

 Increment j
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Barometer instructions



Unsorted elements Comparisons

n n-1

n-1 n-2

… …

3 2

2 1

1 0

n(n-1)/2

John Edgar 11



 Ignoring the actual number of executable 
statements selection sort

 Makes n*(n – 1)/2 comparisons, regardless of the original 
order of the input

 Performs n – 1 swaps

 Neither of these operations are substantially 
affected by the organization of the input 

 O Notation running time?
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n*(n-1)/2 barometer instructions: O(n2)



 An assertion is a statement that is expected to 
always be true at a particular point in a function

 Expressed as a predicate
▪ A function that returns true or false

 Assertions have two benefits

 Help to reason about an algorithm

 Assist in debugging
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 The first i elements of the input array always hold 
the smallest i elements in sorted order

 If we can write an assertion and prove it holds throughout 
the algorithm we can prove the algorithm correct

 Referred to as a loop invariant

 Loop invariant for selection sort

 arr[0 … i-1] is sorted and 

 arr[i-1] < all elements in arr[i … n-1]
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 Assertions can be inserted in code to assist with 
debugging

 C has an assert statement that checks assertions and halts 
a program if the assertion fails
▪ assert(<condition>);

 Be careful that assertions do not cause side-effects

 i.e. change the data in the program
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 Worst case running time

 O(n2)

 Average case running time

 Not discussed in CMPT 125, but

 The variations in running time of selection sort are small

 Note that the number of times the for loops iterate is 
dependent only on the size of the input
▪ Not the organization of the input
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 Another simple sorting algorithm

 Divides array into sorted and unsorted parts

 The sorted part of the array is expanded one 
element at a time

 Find the correct place in the sorted part to place 
the 1st element of the unsorted part

▪ By searching through all of the sorted elements 

 Move the elements after the insertion point up 
one position to make space
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23 41 33 81 07 19 11 45 treats first element as sorted part

07 11 19 23 33 41 45 81 locate position for 45 - 1 comparisons

23 41 33 81 07 19 11 45 locate position for 41 - 1 comparison

23 33 41 81 07 19 11 45 locate position for 33 - 2 comparisons

23 33 41 81 07 19 11 45 locate position for 81 - 1 comparison

07 23 33 41 81 19 11 45 locate position for 07 - 4 comparisons

07 19 23 33 41 81 11 45 locate position for 19- 5 comparisons

07 11 19 23 33 41 81 45 locate position for 11- 6 comparisons



void insertionSort(int arr[], int n){
repeat for all i from 1 to n-1

slide elements to the right to make space for 
the current element, arr[i]
Algorithm:

copy arr[i] to temp
linear scan from right to left
slide while temp < array element

place new element in position

}
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maximum: i – 1 times for 
each iteration, n * (n – 1) / 2

outer loop
n-1  times

minimum: just the test for 
each outer loop iteration, n

void insertionSort(int arr[], int n){
for(int i = 1; i < n; ++i){

temp = arr[i];
int pos = i;
// Shuffle up all sorted items > arr[i]
while(pos > 0 && arr[pos - 1] > temp){

arr[pos] = arr[pos – 1];
pos--;

} //while
// Insert the current item
arr[pos] = temp;

}
}

inner loop body
how many times?



Sorted

Elements

Worst-case 
Search

Worst-case 
Shuffle

0 0 0

1 1 1

2 2 2

… … …

n-1 n-1 n-1

n(n-1)/2 n(n-1)/2
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 The efficiency of insertion sort is affected by 
the state of the array to be sorted

 In the best case the array is already 
completely sorted!

 No movement of array elements is required

 Requires n comparisons
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 In the worst case the array is in reverse order
 Every item has to be moved all the way to the 

front of the array

 The outer loop runs n-1 times

▪ In the first iteration, one comparison and move

▪ In the last iteration, n-1 comparisons and moves

▪ On average, n/2 comparisons and moves

 For a total of n * (n-1) / 2 comparisons and moves
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 The cost of insertion sort is dependent on the 
organization of the input

 Worst case  is O(n2) when input is in reverse order

 Best case  is O(n) when input is sorted

 Selection sort and insertion sort

 Are both incremental sorts

 Have the same worst case Big O running times

 There are better sorting algorithms
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