

 Analyze simple sorting algorithms

 Selection sort

 Insertion sort

 Assertions

John Edgar 2

 The goal of sorting is to put a collection of items in
order from smallest to largest

 The order depends on the type of the items

▪ Numerical value for numbers

▪ Alphabetical order for strings

 Reasons for sorting

 Sometimes useful in its own right

 Also part of other algorithms

John Edgar 3

 As an example of algorithm analysis we will look at
two simple sorting algorithms

 Selection Sort and

 Insertion Sort

 Calculate an approximate cost function for these
two sorting algorithms

 By analyzing how many operations are performed by
each algorithm

 This will include an analysis of how many times the
algorithms' loops iterate

John Edgar 4

 Selection sort is a simple sorting algorithm
that repeatedly finds the smallest item

 The array is divided into a sorted part and an
unsorted part

 Repeatedly swaps the first unsorted item
with the smallest unsorted item

 Starting with the element with index 0, and

 Ending with last but one element (index n – 1)

John Edgar 6

John Edgar 7

23 41 33 81 07 19 11 45 find smallest unsorted - 7 comparisons

07 41 33 81 23 19 11 45 find smallest unsorted - 6 comparisons

07 11 33 81 23 19 41 45 find smallest unsorted - 5 comparisons

07 11 19 81 23 33 41 45 find smallest unsorted - 4 comparisons

07 11 19 23 81 33 41 45 find smallest unsorted - 3 comparisons

07 11 19 23 33 81 41 45 find smallest unsorted - 2 comparisons

07 11 19 23 33 41 81 45 find smallest unsorted - 1 comparison

07 11 19 23 33 41 45 81

John Edgar 8

void selectionSort(int arr[], int n){
repeat for all i from 0 to n-2

find smallest, the index of the smallest
element of arr [i … n-1]

Algorithm: linear scan

swap the smallest element with the current item
arr[smallest]  arr[i]

}

void selectionSort(int arr[], int n){
for(int i = 0; i < n-1; ++i){

int smallest = i;
// Find the index of the smallest element
for(int j = i + 1; j < n; ++j){

if(arr[j] < arr[smallest]){
smallest = j;

}
}
// Swap the smallest with the current item
temp = arr[i];
arr[i] = arr[smallest];
arr[smallest] = temp;

}
}

John Edgar 9

inner loop body
n(n – 1)/2 times

outer loop
n-1 times

 The barometer operation for selection sort
must be in the inner loop

 Since operations in the inner loop are executed
the greatest number of times

 The inner loop contains four operations

 Compare j to array length

 Compare arr[j] to smallest

 Change smallest

 Increment j

John Edgar 10

Barometer instructions

Unsorted elements Comparisons

n n-1

n-1 n-2

… …

3 2

2 1

1 0

n(n-1)/2

John Edgar 11

 Ignoring the actual number of executable
statements selection sort

 Makes n*(n – 1)/2 comparisons, regardless of the original
order of the input

 Performs n – 1 swaps

 Neither of these operations are substantially
affected by the organization of the input

 O Notation running time?

John Edgar 12

n*(n-1)/2 barometer instructions: O(n2)

 An assertion is a statement that is expected to
always be true at a particular point in a function

 Expressed as a predicate
▪ A function that returns true or false

 Assertions have two benefits

 Help to reason about an algorithm

 Assist in debugging

John Edgar 13

 The first i elements of the input array always hold
the smallest i elements in sorted order

 If we can write an assertion and prove it holds throughout
the algorithm we can prove the algorithm correct

 Referred to as a loop invariant

 Loop invariant for selection sort

 arr[0 … i-1] is sorted and

 arr[i-1] < all elements in arr[i … n-1]

John Edgar 14

 Assertions can be inserted in code to assist with
debugging

 C has an assert statement that checks assertions and halts
a program if the assertion fails
▪ assert(<condition>);

 Be careful that assertions do not cause side-effects

 i.e. change the data in the program

John Edgar 15

 Worst case running time

 O(n2)

 Average case running time

 Not discussed in CMPT 125, but

 The variations in running time of selection sort are small

 Note that the number of times the for loops iterate is
dependent only on the size of the input
▪ Not the organization of the input

John Edgar 16

 Another simple sorting algorithm

 Divides array into sorted and unsorted parts

 The sorted part of the array is expanded one
element at a time

 Find the correct place in the sorted part to place
the 1st element of the unsorted part

▪ By searching through all of the sorted elements

 Move the elements after the insertion point up
one position to make space

John Edgar 18

John Edgar 19

23 41 33 81 07 19 11 45 treats first element as sorted part

07 11 19 23 33 41 45 81 locate position for 45 - 1 comparisons

23 41 33 81 07 19 11 45 locate position for 41 - 1 comparison

23 33 41 81 07 19 11 45 locate position for 33 - 2 comparisons

23 33 41 81 07 19 11 45 locate position for 81 - 1 comparison

07 23 33 41 81 19 11 45 locate position for 07 - 4 comparisons

07 19 23 33 41 81 11 45 locate position for 19- 5 comparisons

07 11 19 23 33 41 81 45 locate position for 11- 6 comparisons

void insertionSort(int arr[], int n){
repeat for all i from 1 to n-1

slide elements to the right to make space for
the current element, arr[i]
Algorithm:

copy arr[i] to temp
linear scan from right to left
slide while temp < array element

place new element in position

}

John Edgar 20

John Edgar 21

maximum: i – 1 times for
each iteration, n * (n – 1) / 2

outer loop
n-1 times

minimum: just the test for
each outer loop iteration, n

void insertionSort(int arr[], int n){
for(int i = 1; i < n; ++i){

temp = arr[i];
int pos = i;
// Shuffle up all sorted items > arr[i]
while(pos > 0 && arr[pos - 1] > temp){

arr[pos] = arr[pos – 1];
pos--;

} //while
// Insert the current item
arr[pos] = temp;

}
}

inner loop body
how many times?

Sorted

Elements

Worst-case
Search

Worst-case
Shuffle

0 0 0

1 1 1

2 2 2

… … …

n-1 n-1 n-1

n(n-1)/2 n(n-1)/2

John Edgar 22

 The efficiency of insertion sort is affected by
the state of the array to be sorted

 In the best case the array is already
completely sorted!

 No movement of array elements is required

 Requires n comparisons

John Edgar 23

 In the worst case the array is in reverse order
 Every item has to be moved all the way to the

front of the array

 The outer loop runs n-1 times

▪ In the first iteration, one comparison and move

▪ In the last iteration, n-1 comparisons and moves

▪ On average, n/2 comparisons and moves

 For a total of n * (n-1) / 2 comparisons and moves

John Edgar 24

 The cost of insertion sort is dependent on the
organization of the input

 Worst case is O(n2) when input is in reverse order

 Best case is O(n) when input is sorted

 Selection sort and insertion sort

 Are both incremental sorts

 Have the same worst case Big O running times

 There are better sorting algorithms

John Edgar 25

