
CMPT 125

 Checking for duplicates
 Maximum density
 Battling computers and algorithms
 Barometer Instructions
 Big O expressions

John Edgar 2

 Write a function to determine if an array contains duplicates

int duplicate_check(int a[], int n) {

int i = n;

while (i > 0) {
i--;

int j = i - 1;

while (j >= 0) {
if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;
}

John Edgar 4

Which statements run most frequently?

The answer depends on the array elements

What is the worst case?

 We often consider the worst case behaviour of an
algorithm as a benchmark

▪ Guarantees performance under all circumstances

▪ Often, but not always, similar to average case behaviour

 Instead of timing an algorithm we can predict
performance by counting the number of operations

▪ Performed by the algorithm in the worst case

▪ Derive total number of operations as a function of the input
size (n)

int duplicate_check(int a[], int n) {

int i = n;

while (i > 0) {
i--;

int j = i - 1;

while (j >= 0) {
if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;
}

John Edgar 6

outside any loop: 2

outer loop: 3n + 1

inner loop: 3i + 1,
for i from n-1 to 1

3/2 n2 + 5/2n + 3

1

n+1

n

n

i+1
i

i

1

= 3/2 n2 – 1/2n

total:

 Graph the check duplicate algorithm running times

▪ Doubling the input size quadruples the running time

▪ A quadratic function

John Edgar 7

n time

10,000 108

25,000 640

50,000 2,427

100,000 8,841

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20,000 40,000 60,000 80,000 100,000

 Given a two dimensional, nxn, array of integers find
the 10x10 swatch with the largest sum

▪ Resource management

▪ Finding brightest areas of photographs

bright spots on Ceres

 Simple approach

▪ Try every possible position for the top-left corner of the
10x10 swatch
▪ There are (n-10)x(n-10) of them

▪ Use a nested loop

 The values in each 10x10 swatch can be summed

▪ Retaining the largest

 A brute-force approach

int max10by10(int arr[N][N]) {
int best = 0;
for (int u_row = 0; u_row < N-10; u_row++) {

for (int u_col = 0; u_col < N-10; u_col++) {
int total = 0;
for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {
total += arr[row][col];

}
}
best = max(best, total);

}
}
return best;

}

John Edgar 11

Total: 348N2 - 6956N + 34762

N
-1

0

N
-1

0

10

11 10

10

Approximate method: count barometer instructions,
the most frequently occurring instructions

Total = 31 x 10 x (N-10) x (N-10) = 310N2

 Empirical timing

▪ Run program on a real machine with various input sizes
▪ Plot a graph to determine the relationship

 Operation counting

▪ Assumes all elementary instructions execute in
approximately the same amount of time

 Actual performance can depend on much more than
just the choice of algorithm

 Actual running time is affected by

▪ CPU speed

▪ Amount of RAM

▪ Specialized hardware (e.g., graphics card)

▪ Operating system

▪ System configuration (e.g., virtual memory)

▪ Programming Language

▪ Algorithm Implementation

▪ Other Programs

▪ …

 There can be many ways to solve a problem

▪ Different algorithms that produce the same result
▪ There are numerous sorting algorithms

 Compare algorithms by their behaviour for large
input sizes, i.e., as n gets large

▪ On today’s hardware, most algorithms perform quickly for
small n

 Interested in growth rate as a function of n

▪ Sum an array: linear growth

▪ Check for duplicates: quadratic growth

O(n)

O(n2)

 Express the number of operations in an algorithm as
a function of n, the problem size

 Briefly

▪ Take the dominant term

▪ Remove the leading constant

▪ Put O(…) around it

 For example, f(N) = 348n2 – 6956n + 34762

▪ i.e. O(n2)

 Given a function T(n)

▪ Say that T(N) = O(f(n)) if T(n) is at most a constant times f(n)
▪ Except perhaps for some small values of n

 Properties

▪ Constant factors don’t matter

▪ Low-order terms don’t matter

 Rules

▪ For any k and any function f(n), k*f(n) = O(f(n))
▪ e.g., 5n = O(n)

▪ e.g., logan = O(logbn) Do leading constants really not matter?

 Of course leading constants matter

▪ Consider two algorithms
▪ f1(n) = 20n2

▪ f2(n) = 2n2

▪ Algorithm 2 runs ten times faster

 Let's consider machine speed

▪ If machine 1 is ten times faster than machine 2 it will run the
same algorithm ten times faster

 Big O notation ignores leading constants

▪ It is a hardware independent analysis

 Let's compare two algorithms on two computers
 Computer 1 – Sunway TaihuLight

▪ Speed, 93 petaflops

▪ 93 * 1015 floating point operations per second

▪ 93,000,000 gigaflops

▪ Fastest supercomputer 2016

 Computer 2 – Alienware Area 51

▪ CPU – Intel Core i7 6950X , 98 gigaflops

▪ 98 * 109 floating point operations per second

▪ 2016 Gaming PC

 The TaihuiLight is approximately 1,000,000 times faster

 Let's compare two algorithms on two computers

 Algorithm 1 – nested loop duplicate check

▪ f1(n) = 3/2n2 + 5/2n + 3

 Algorithm 2 – a different duplicate check algorithm

▪ f2(n) = 30n * log2(n) + 5n + 4

 Not only is the TaihuLight much faster but it's

algorithm has a much smaller leading constant

▪ 3/2 versus 30

 Conclusions

▪ Area 51 running the algorithm with
the smaller dominant term is faster

▪ For large values of n

▪ A slower computer with smaller O
algorithm is faster

▪ The nlog(n) algorithm does not grow
as fast as the n2 algorithm

▪ The slower the function grows the
faster the algorithm

▪ With n2 an increase in size of 10x increases
running time by 100x

▪ With nlog(n) an increase in size of 10x
increases running time by just over 10x

n TaihuLight Area 51

100,000 161 ns 514 µs

106 16 µs 6 ms

107 1.61 ms 72 ms

108 161 ms 819 ms

109 16 s 9 s

1010 27 mins 102 s

1011 45 hrs 19 mins

1012 187 days 3.4 hrs

1013 51 years 1.5 days

 We often use the worst-case behavior as a
benchmark

 Derive the number of instructions as a function of
the input size, n

▪ Can use the time command to measure for values of n

▪ Or count the number of operations

 Use Big O to express the growth rate

▪ Compare algorithms behaviour as n gets large

▪ Remove leading constants

▪ Hardware independent analysis

John Edgar 23

 Leading constants are affected by

▪ CPU speed

▪ Other tasks performed by the system

▪ Memory characteristics

▪ Program optimization

 Regardless of leading constants

▪ A O(n log(n)) algorithm will outperform a O(n2) algorithm as
n gets large

John Edgar 24

 A well designed and written algorithm can make the
difference between software being usable or not

▪ n may be very large
▪ Google

▪ Or the number of times a task has to be performed may be
very large
▪ Google again

▪ Or it may be necessary to have near instanteous response
▪ Real-time systems

John Edgar 25

 Algorithms can be optimized

▪ Implemented so as to improve performance
▪ Reducing the number of operations

▪ Replacing slower instructions with faster instructions

▪ Making more efficient of memory

▪ …

 Instead of improving an inherently slow algorithm

▪ Consider if is there is a better algorithm
▪ With a smaller Big O running time

▪ Of course, no such algorithm might exist …

 Given an algorithm, how do you determine its Big O
growth rate ?

▪ The frequency of the algorithm’s barometer instructions will
be proportional to its Big-O running time

 Identify the most frequent instruction and count it
 Consider

▪ Loops

▪ Decisions

▪ Function calls

int max10by10(int arr[N][N]) {
int best = 0;
for (int u_row = 0; u_row < N-10; u_row++) {

for (int u_col = 0; u_col < N-10; u_col++) {
int total = 0;
for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {
total += arr[row][col];

}
}
best = max(best, total);

}
}
return best;

}

John Edgar 28

10

Barometer instructions

f(N) = 3 x 10 x 10 x (N-10) x (N-10) = O(N)2

10

N-10
N-10

 Function calls are not elementary instructions

▪ They must be substituted for the Big O running time

int range(int arr[], int n) {

int lo = min(arr, n);

int hi = max(arr, n);

return hi-lo;

}

O(n)

O(n)

O(1)

T(n) = O(n) + O(n) + O(1)

= O(n)

 If … else is not an elementary operation

▪ Take the larger of the running times

▪ Remember ... worst case analysis

int search(int arr[], int n, int key) {

if (!sorted(arr, n)) {

return lsearch(arr, n, key);

} else {

return bsearch(arr, n, key);

}

}

O(n)

=O(n)

O(n)

T(n) = O(n) + max(O(n) + O(log n))

O(log n)

=O(n) + O(n)

 Take the dominant term, remove the leading
constant and put O(…) around it

▪ Lower order terms do not matter

▪ Constants do not matter

 Powers of n are ordered according to their exponents

▪ i.e. na = O(nb) if and only if a ≤ b

▪ e.g. n2 = O(n3) but n3 is not O(n2)

 A logarithm grows more slowly than any positive
power of n greater than 1

▪ e.g. log2 n = O(n1/2)

▪ Though we say that log2 n = O(log2 n)
▪ Note that if log n is referred to it is assumed that the base is 2

 Transitivity

▪ If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))

 Addition

▪ f(n) + g(n) = O(max(f(n), g(n)))

 Multiplication

▪ if f1(n) = O(g1(n)) and f2(n) = O(g2(n))

▪ then f1(n) * f2(n) = O(g1(n) * g2(n))

 An example

▪ (10 + 5n2)(10log2n + 1) + (5n + log2n)(10n + 2n log2n)

 O(1) – constant time

▪ The time is independent of n, e.g. array look-up

 O(logn) – logarithmic time

▪ Usually the log is to the base 2, e.g. binary search

 O(n) – linear time, e.g. linear search

 O(n log n), e.g. quicksort, mergesort

 O(n2) – quadratic time, e.g. selection sort

 O(nk) , where k is a constant – polynomial

 O(2n) – exponential time, very slow!

0

50

100

150

200

250

300

350

400

450

10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 36

Hard to see what is happening with n so small …

John Edgar 37

n2 and n(n-1)/2 are growing much faster than any of the others

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 38

Hmm! Let's try a logarithmic scale …

0

200000000000

400000000000

600000000000

800000000000

1000000000000

1200000000000

10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 39

Notice how clusters of growth rates start to emerge

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

100000000000

1000000000000

10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

