CMPT 125

Analysis and O Notation

Analysis

Checking for duplicates

Maximum density

Battling computers and algorithms
Barometer Instructions

Big O expressions

John Edgar

Duplicates

Duplicate Function

Write a function to determine if an array contains duplicates
int duplicate_check(int a[], int n) {
int 1 = n;
while (i > 9) {
1--5
int j =1 - 1;
while (j >= 0) {
if (a[i] == a[3j]) {

return 1;
}
: J=7> Which statements run most frequently?
t The answer depends on the array elements
return 0;

} What is the worst case?

John Edgar 4

Worst Case Performance

We often consider the worst case behaviour of an
algorithm as a benchmark

Guarantees performance under all circumstances

Often, but not always, similar to average case behaviour
Instead of timing an algorithm we can predict
performance by counting the number of operations

Performed by the algorithm in the worst case

Derive total number of operations as a function of the input
size (n)

Duplicate Function

int duplicate_check(int a[], int n) {
int 1 = n;
while (li—>—°@) { outside any loop: 2
int j =1 - 1;
while (j >= @) {
if (a[i] == a[j]) {

outer loop: 3n +1

return 1; inner loop: 3i + 1,
} forifromn-1to1
J--5
} =3/2n*-1/2n
}
return 0; total: | 3/2n%?+5/2n +3

John Edgar 6

Empirical Measurement

Graph the check duplicate algorithm running times

Doubling the input size quadruples the running time
A quadratic function

10000

9000

8000

10,000 108 7000
6000

25,000 640 5000
4000

50,000 2,427

3000

100,000 8,841 2000
1000
(6}

0 20,000 40,000 60,000 80,000 100,000

John Edgar 7

2D Maximum Density

Maximum Density

Given a two dimensional, nxn, array of integers find
the 10x10 swatch with the largest sum

Resource management

Finding brightest areas of photographs

bright spots on Ceres

Maximum Density Algorithm

Simple approach

Try every possible position for the top-left corner of the
10x10 swatch

There are (n-10)x(n-10) of them

Use a nested loop

The values in each 10x10 swatch can be summed

Retaining the largest
A brute-force approach

Maximum Density Algorithm

int max1ebyle(int arr[N][N]) { Total: 348N - 6956N + 34762
int best = 0;
for (int u row = @; u row < N-10; u row++) {
for (int u_col = @; u _col < N-10; u col++) {
int total = 0;
for (int row = u_row; row < u_row+l10; row++) {
for (int col = u _col; col < u col+10; col++) {
total += arr[row][col];
}
}
best = max(best, total);
}

) Approximate method: count barometer instructions,
return best; the mostfrequently occurring instructions

}

Total =31 x 10 x (N-10) x (N-10) = 320N?2

John Edgar 11

Which Measure?

Empirical timing
Run program on a real machine with various input sizes

Plot a graph to determine the relationship
Operation counting

Assumes all elementary instructions execute in
approximately the same amount of time

Actual performance can depend on much more than
just the choice of algorithm

Running Time

Actual running time is affected by
CPU speed
Amount of RAM
Specialized hardware (e.qg., graphics card)
Operating system
System configuration (e.q., virtual memory)
Programming Language
Algorithm Implementation
Other Programs

Comparisons

CHUCKY

WICKED WITCH OF THE WEST

TYRANNOSAURUS REX

MEGATRON

50 FOOT WOMAN

Comparing Algorithm Performance

There can be many ways to solve a problem

Different algorithms that produce the same result
There are numerous sorting algorithms
Compare algorithms by their behaviour for large

input sizes, i.e., as n gets large

On today’s hardware, most algorithms perform quickly for
small n

Interested in growth rate as a function of n
Sum an array: linear growth O(n)
Check for duplicates: quadratic growth 0O(n?)

Order Notation (Big O)

Express the number of operations in an algorithm as
a function of n, the problem size
Briefly
Take the dominant term
Remove the leading constant
Put O(...) around it
For example, f(N) =348n2 - 6956n + 34762
l.e. O(n?)

O Notation, Formally

Given a function T(n)
Say that T(N) = O(f(n)) if T(n) is at most a constant times f(n)

Except perhaps for some small values of n
Properties
Constant factors don't matter
Low-order terms don‘t matter
Rules

For any k and any function f(n), k*f(n) = O(f(n))
e.g., 5n =0(n)
e.g., log,n=0(log,n) Do leading constants really not matter?

Leading Constants

Of course leading constants matter

Consider two algorithms
f.(n) =20n?
f.(n) =2n?
Algorithm 2 runs ten times faster
Let's consider machine speed
If machine 1is ten times faster than machine 2 it will run the
same algorithm ten times faster
Big O notation ignores leading constants

It is a hardware independent analysis

Leading Constants

Let's compare two algorithms on two computers
Computer 1—Sunway TaihuLight | |

Speed, 93 petaflops
93 * 10% floating point operations per second |
93,000,000 gigaflops

Fastest supercomputer 2016
Computer 2 — Alienware Area 51
CPU —Intel Core i7 6950X, 98 gigaflops

98 * 109 floating point operations per second

2016 Gaming PC
The TaihuiLight is approximately 1,000,000 times faster

The Algorithms

Let's compare two algorithms on two computers
Algorithm 1 — nested loop duplicate check

fi(n)=3/2n*>+5/2n +3
Algorithm 2 — a different duplicate check algorithm

f2(n) =30n *log,(n) + 5n + 4
Not only is the TaihuLight much faster but it's
algorithm has a much smaller leading constant

3/2 versus 30

Results

Conclusions

— TaihuLight Area 51 running the algorithm with

the smaller dominant term is faster

100,000 161 ns 514 US
For large values of n
10° 16 s 6 ms _

: A slower computer with smaller O

10 L6 [72 M5 algorithm is faster

10° 161 ms 819 ms The nlog(n) algorithm does not grow
109 16's 9s as fast as the n? algorithm
10%° 27 mins 102'S The slower the function grows the
1o 45 hrs 16 mins faster the algorithm

) With n? an increase in size of 10x increases
1

10 187 days 3.4 hrs running time by 100x

1013 51 years 1.5 days With nlog(n) an increase in size of 10x

increases running time by just over 10x

Barometer Instructions

Review

We often use the worst-case behavior as a
benchmark

Derive the number of instructions as a function of
the input size, n
Can use the time command to measure for values of n

Or count the number of operations
Use Big O to express the growth rate

Compare algorithms behaviour as n gets large
Remove leading constants

Hardware independent analysis

John Edgar

Leading Constants Review

Leading constants are affected by
CPU speed
Other tasks performed by the system
Memory characteristics
Program optimization

Regardless of leading constants

A O(n log(n)) algorithm will outperform a O(n2?) algorithm as
n gets large

John Edgar

Algorithms Matter as n Grows

A well designed and written algorithm can make the
difference between software being usable or not
n may be very large
Google

Or the number of times a task has to be performed may be
very large
Google again
Or it may be necessary to have near instanteous response
Real-time systems

John Edgar

Optimization

Algorithms can be optimized

Implemented so as to improve performance
Reducing the number of operations
Replacing slower instructions with faster instructions
Making more efficient of memory

Instead of improving an inherently slow algorithm

Consider if is there is a better algorithm
With a smaller Big O running time

Of course, no such algorithm might exist ...

Big O

Given an algorithm, how do you determine its Big O
growth rate ?

The frequency of the algorithm’s barometer instructions will
be proportional to its Big-O running time

Identify the most frequent instruction and count it
Consider

Loops

Decisions

Function calls

Counting — Loops

int max1ebyle(int arr[N][N]) {
int best = 0;
for (int u row = @; u row < N-10; u row++) {
for (int u_col = @; u _col < N-10; u col++) {
int total = 0;
for (int row = u_row; row < u_row+l10; row++) {
for (int col = u _col; col < u col+10; col++) {
total += arr[row][col];

} } Barometer instructions
best = max(best, total);
}
}
return best; f(N) = 3 x20 x 20 x (N-10) x (N-10) = O(N)?

}

John Edgar 28

Counting - Functions

Function calls are not elementary instructions
They must be substituted for the Big O running time
int range(int arr[], int n) {
int lo = min(arr, n); O(n)
int hi = max(arr, n); O(n)
return hi-1lo; O(2)

T(n) = O(n) + O(n) + O(a2)
=0(n)

Counting — Decisions

If ... else is not an elementary operation
Take the larger of the running times
Remember ... worst case analysis
int search(int arr[], int n, int key) {
if (!sorted(arr, n)) { O
return lsearch(arr, n, key); o)
} else {
return bsearch(arr, n, key); O(logn)

} T(n) = O(n) + max(O(n) + O(log n))
=0(n) + O(n) =0(n)

Big O Notation

Big O Rules

Take the dominant term, remove the leading
constant and put O(...) around it

Lower order terms do not matter
Constants do not matter

Rules About Polynomials

Powers of n are ordered according to their exponents
i.,e.n?=0(n% ifandonlyifa<b
e.g. n? = 0(n3) but n3is not O(n?)
A logarithm grows more slowly than any positive
power of n greater than 1
e.g. log, n =0(n¥?)
Though we say that log, n = O(log, n)

Note that if log nis referred to it is assumed that the base is 2

More Rules

Transitivity

If f(n) = O(g(n)) and g(n) = O(h(n)) then fn) = O(h(n))
Addition

f(n) + g(n) = O(max(f(n), g(n)))
Multiplication

if fa(n) = O(g1(n)) and f2(n) = O(g2(n))

then f1(n) * f2(n) = O(g1(n) * g2(n))
An example

(10 + 5n?)(20log,n + 1) + (5n + log,n)(z0n + 2n log,n)

Common Growth Rates

O(1) — constant time

The time is independent of n, e.g. array look-up
O(logn) — logarithmic time

Usually the log is to the base 2, e.g. binary search
O(n) —linear time, e.q. linear search
O(n log n), e.g. quicksort, mergesort
O(n?) — quadratic time, e.g. selection sort
O(n¥), where k is a constant — polynomial
O(2") — exponential time, very slow!

Small n

Hard to see what is happening with n so small ...

450
400
log2n
350
e r5(l0g2n)
e=3(n+1)/4
300
wn
S n
k=
@©
E’_ 250 n(logzn)
o e==n((n-1)/2)
Y
o
@ 200 c— 12
]
£
=]
Z
150
100
50
o CE—
10 11 12 13 14 15 16 17 18 19 20
n

John Edgar 36

Not Much Bigger n

n? and n(n-1)/2 are growing much faster than any of the others

12000
10000
w 8000
c
) log2n
®
e e r5(l0g2n)
S
- 6000 e—3(N+1)/4
@ n
]
§ n(logzn)
pd
4000 =—n((n-1)/2)
2000

10 20 30 40 50 60 70 8o 90 100

John Edgar 37

n from 10 to 1,000,000

1200000000000

1000000000000

800000000000

600000000000

Number of Operations

400000000000

200000000000

John Edgar

Hmm! Let's try a logarithmic scale ...

log2n
e r5(l0g2n)
—3(n+1)/4
n
n(logzn)
e=n((n-1)/2)

10 5o 100 500 1000 5000 10000 50000 100000 §O0O0O00 1000000

n

38

n from 10 to 1,000,000

Notice how clusters of growth rates start to emerge

1000000000000
100000000000
10000000000
1000000000
" 100000000
c
§e) log2n
® 10000000
a —5(|og 2n)
o
8 1000000 e 3(N+1)/4
[5)
] n
-g 100000
5 n(logzn)
Z
10000 e ((n-1)/2)
1000
100
—
10
I
1
10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

n

John Edgar 39

