CMPT 125 Analysis and O Notation

- Checking for duplicates
- Maximum density
- Battling computers and algorithms
- Barometer Instructions
- Big O expressions

Duplicates

Duplicate Function

 Write a function to determine if an array contains duplicates int duplicate_check(int a[], int n) { int i = n;while (i > 0) { i--; int j = i - 1;while $(j \ge 0)$ { if (a[i] == a[j]) { return 1; } j--; Which statements run most frequently? } } The answer depends on the array elements return 0; What is the worst case? }

Worst Case Performance

- We often consider the worst case behaviour of an algorithm as a benchmark
 - Guarantees performance under all circumstances
 - Often, but not always, similar to average case behaviour
- Instead of timing an algorithm we can predict performance by counting the number of operations
 - Performed by the algorithm in the worst case
 - Derive total number of operations as a function of the input size (n)

Duplicate Function

```
int duplicate check(int a[], int n) {
     int i = n;
1
n+1 while (i > 0) {
                                                        outside any loop: 2
              i--;
n
              int j = i - 1;
n
                                                        outer loop: 3n + 1
              while (j >= 0) {
i+1
                       if (a[i] == a[j]) {
i
                                                        inner loop: 3i + 1,
                                return 1;
                                                        for i from n-1 to 1
                       }
                       j--;
i
              }
                                                        = 3/2 n^2 - 1/2n
      }
     return 0;
                                                       3/2 n<sup>2</sup> + 5/2n + 3
1
}
                                               total:
```

Empirical Measurement

- Graph the check duplicate algorithm running times
 - Doubling the input size quadruples the running time
 - A quadratic function

n		time
	10,000	108
	25,000	640
	50,000	2,427
	100,000	8,841

2D Maximum Density

Maximum Density

- Given a two dimensional, nxn, array of integers find the 10x10 swatch with the largest sum
 - Resource management
 - Finding brightest areas of photographs

Maximum Density Algorithm

Simple approach

- Try every possible position for the top-left corner of the 10x10 swatch
 - There are (*n*-10)x(*n*-10) of them
 - Use a nested loop

The values in each 10x10 swatch can be summed

- Retaining the largest
- A brute-force approach

Maximum Density Algorithm

Which Measure?

Empirical timing

- Run program on a real machine with various input sizes
 - Plot a graph to determine the relationship
- Operation counting
 - Assumes all elementary instructions execute in approximately the same amount of time
- Actual performance can depend on much more than just the choice of algorithm

Running Time

- Actual running time is affected by
 - CPU speed
 - Amount of RAM
 - Specialized hardware (e.g., graphics card)
 - Operating system
 - System configuration (e.g., virtual memory)
 - Programming Language
 - Algorithm Implementation
 - Other Programs

· . . .

Comparisons

Comparing Algorithm Performance

- There can be many ways to solve a problem
 - Different algorithms that produce the same result
 - There are numerous sorting algorithms
- Compare algorithms by their behaviour for large input sizes, i.e., as n gets large
 - On today's hardware, most algorithms perform quickly for small n
- Interested in growth rate as a function of n
 - Sum an array: *linear* growth O(n)
 - Check for duplicates: quadratic growth O(n²)

Order Notation (Big O)

 Express the number of operations in an algorithm as a function of n, the problem size

Briefly

- Take the dominant term
- Remove the leading constant
- Put O(...) around it
- For example, $f(N) = \frac{348n^2}{-} 6956n + 34762$

■ i.e. O(*n*²)

O Notation, Formally

Given a function T(n)

- Say that T(N) = O(f(n)) if T(n) is at most a constant times f(n)
 - Except perhaps for some small values of n
- Properties
 - Constant factors don't matter
 - Low-order terms don't matter

Rules

- For any k and any function f(n), k*f(n) = O(f(n))
 - e.g., 5*n* = *O*(*n*)
 - e.g., $\log_a n = O(\log_b n)$

Do leading constants really not matter?

Leading Constants

Of course leading constants matter

- Consider two algorithms
 - $f_1(n) = 20n^2$
 - $f_{2}(n) = 2n^{2}$
- Algorithm 2 runs ten times faster
- Let's consider machine speed
 - If machine 1 is ten times faster than machine 2 it will run the same algorithm ten times faster
- Big O notation ignores leading constants
 - It is a hardware independent analysis

Leading Constants

- Let's compare two algorithms on two computers
- Computer 1 Sunway TaihuLight
 - Speed, 93 petaflops
 - 93 * 10¹⁵ floating point operations per second
 - 93,000,000 gigaflops
 - Fastest supercomputer 2016
- Computer 2 Alienware Area 51
 - CPU Intel Core i7 6950X, 98 gigaflops
 - 98 * 10⁹ floating point operations per second
 - 2016 Gaming PC

The Algorithms

- Let's compare two algorithms on two computers
- Algorithm 1 nested loop duplicate check
 - $f_1(n) = 3/2n^2 + 5/2n + 3$
- Algorithm 2 a different duplicate check algorithm
 - $f_2(n) = 30n * log_2(n) + 5n + 4$
- Not only is the TaihuLight much faster but it's algorithm has a much smaller leading constant
 - 3/2 versus 30

Results

n	TaihuLight	Area 51
100,000	161 ns	514 µs
10 ⁶	16 µs	6 ms
10 ⁷	1.61 ms	72 ms
10 ⁸	161 ms	819 ms
10 ⁹	16 s	9 s
10 ¹⁰	27 mins	102 S
10 ¹¹	45 hrs	19 mins
10 ¹²	187 days	3.4 hrs
10 ¹³	51 years	1.5 days

Conclusions

- Area 51 running the algorithm with the smaller dominant term is faster
 - For large values of *n*
- A slower computer with smaller O algorithm is faster
- The nlog(n) algorithm does not grow as fast as the n² algorithm
- The slower the function grows the faster the algorithm
 - With n² an increase in size of 10x increases running time by 100x
 - With nlog(n) an increase in size of 10x increases running time by just over 10x

Barometer Instructions

Review

- We often use the worst-case behavior as a benchmark
- Derive the number of instructions as a function of the input size, n
 - Can use the time command to measure for values of n
 - Or count the number of operations
- Use Big O to express the growth rate
 - Compare algorithms behaviour as n gets large
 - Remove leading constants
 - Hardware independent analysis

Leading Constants Review

- Leading constants are affected by
 - CPU speed
 - Other tasks performed by the system
 - Memory characteristics
 - Program optimization
- Regardless of leading constants
 - A O(n log(n)) algorithm will outperform a O(n²) algorithm as n gets large

Algorithms Matter as *n* Grows

- A well designed and written algorithm can make the difference between software being usable or not
 - n may be very large
 - Google
 - Or the number of times a task has to be performed may be very large
 - Google again
 - Or it may be necessary to have near instanteous response
 - Real-time systems

Optimization

Algorithms can be optimized

- Implemented so as to improve performance
 - Reducing the number of operations
 - Replacing slower instructions with faster instructions
 - Making more efficient of memory
 - • •
- Instead of improving an inherently slow algorithm
 - Consider if is there is a better algorithm
 - With a smaller Big O running time
 - Of course, no such algorithm might exist ...

- Given an algorithm, how do you determine its Big O growth rate ?
 - The frequency of the algorithm's barometer instructions will be proportional to its Big-O running time
- Identify the most frequent instruction and count it
- Consider
 - Loops
 - Decisions
 - Function calls

Counting – Loops

```
int max10by10(int arr[N][N]) {
     int best = 0;
N-10 for (int u_row = 0; u_row < N-10; u_row++) {
    N-10 for (int u col = 0; u col < N-10; u col++) {
             int total = 0;
          10 for (int row = u row; row < u row+10; row++) {
              10 for (int col = u_col; col < u_col+10; col++) {</pre>
                     total += arr[row][col];
                 }
                                           Barometer instructions
             }
             best = max(best, total);
         }
     }
                           f(N) = 3 \times 10 \times 10 \times (N-10) \times (N-10) = O(N)^2
     return best;
  }
```

Counting – Functions

- Function calls are not elementary instructions
- They must be substituted for the Big O running time
int range(int arr[], int n) {
 int lo = min(arr, n); O(n)
 int hi = max(arr, n); O(n)
 return hi-lo; O(1)
}

$$T(n) = O(n) + O(n) + O(1)$$

= O(n)

Counting – Decisions

- If ... else is not an elementary operation
 - Take the larger of the running times
 - Remember ... worst case analysis
 - int search(int arr[], int n, int key) {
 - if (!sorted(arr, n)) { O(n)

=O(n) + O(n)

return lsearch(arr, n, key); O(n)

} else {

}

return bsearch(arr, n, key); O(log n)

 $\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n}) + \max(\mathsf{O}(\mathsf{n}) + \mathsf{O}(\log \mathsf{n}))$

=O(n)

Big O Notation

- Take the dominant term, remove the leading constant and put O(...) around it
 - Lower order terms do not matter
 - Constants do not matter

Rules About Polynomials

- Powers of n are ordered according to their exponents
 - i.e. $n^a = O(n^b)$ if and only if $a \le b$
 - e.g. n² = O(n³) but n³ is not O(n²)
- A logarithm grows more slowly than any positive power of n greater than 1
 - e.g. $\log_2 n = O(n^{1/2})$
 - Though we say that $\log_2 n = O(\log_2 n)$
 - Note that if log n is referred to it is assumed that the base is 2

More Rules

- Transitivity
 - If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))

Addition

- f(n) + g(n) = O(max(f(n), g(n)))
- Multiplication
 - if $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$
 - then $f_1(n) * f_2(n) = O(g_1(n) * g_2(n))$

An example

• $(10 + 5n^2)(10\log_2 n + 1) + (5n + \log_2 n)(10n + 2n \log_2 n)$

Common Growth Rates

- O(1) constant time
 - The time is independent of n, e.g. array look-up
- O(logn) logarithmic time
 - Usually the log is to the base 2, e.g. binary search
- O(n) linear time, e.g. linear search
- O(*n* log *n*), e.g. quicksort, mergesort
- O(n²) quadratic time, e.g. selection sort
- O(n^k), where k is a constant polynomial
- O(2ⁿ) exponential time, very slow!

Small *n*

Not Much Bigger n

n from 10 to 1,000,000

John Edgar

n from 10 to 1,000,000

John Edgar