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 Checking for duplicates
 Maximum density
 Battling computers and algorithms
 Barometer Instructions
 Big O expressions
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 Write a function to determine if an array contains duplicates

int duplicate_check(int a[], int n) {

int i = n;

while (i > 0) {
i--;

int j = i - 1;

while (j >= 0) {
if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;
}
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Which statements run most frequently?

The answer depends on the array elements

What is the worst case?



 We often consider the worst case behaviour of an 
algorithm as a benchmark

▪ Guarantees performance under all circumstances

▪ Often, but not always, similar to average case behaviour

 Instead of timing an algorithm we can predict 
performance by counting the number of operations

▪ Performed by the algorithm in the worst case

▪ Derive total number of operations as a function of the input 
size (n)



int duplicate_check(int a[], int n) {

int i = n;

while (i > 0) {
i--;

int j = i - 1;

while (j >= 0) {
if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;
}
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outside any loop: 2

outer loop: 3n + 1

inner loop: 3i + 1,
for i from n-1 to 1

3/2 n2 + 5/2n + 3

1

n+1

n

n

i+1
i

i

1

= 3/2 n2 – 1/2n

total:



 Graph the check duplicate algorithm running times

▪ Doubling the input size quadruples the running time

▪ A quadratic function
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 Given a two dimensional, nxn, array of integers find 
the 10x10 swatch with the largest sum

▪ Resource management

▪ Finding brightest areas of photographs

bright spots on Ceres



 Simple approach

▪ Try every possible position for the top-left corner of the 
10x10 swatch
▪ There are (n-10)x(n-10) of them

▪ Use a nested loop

 The values in each 10x10 swatch can be summed

▪ Retaining the largest

 A brute-force approach



int max10by10(int arr[N][N]) {
int best = 0;
for (int u_row = 0; u_row < N-10; u_row++) {

for (int u_col = 0; u_col < N-10; u_col++) {
int total = 0;
for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {
total += arr[row][col];

}
}
best = max(best, total);

}
}
return best;

}
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Total: 348N2 - 6956N + 34762

N
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Approximate method: count barometer instructions,
the most frequently occurring instructions

Total = 31 x 10 x (N-10) x (N-10) = 310N2



 Empirical timing

▪ Run program on a real machine with various input sizes
▪ Plot a graph to determine the relationship

 Operation counting

▪ Assumes all elementary instructions execute in 
approximately the same amount of time

 Actual performance can depend on much more than 
just the choice of algorithm



 Actual running time is affected by

▪ CPU speed

▪ Amount of RAM

▪ Specialized hardware (e.g., graphics card)

▪ Operating system

▪ System configuration (e.g., virtual memory)

▪ Programming Language

▪ Algorithm Implementation

▪ Other Programs

▪ …





 There can be many ways to solve a problem

▪ Different algorithms that produce the same result
▪ There are numerous sorting algorithms

 Compare algorithms by their behaviour for large 
input sizes, i.e., as n gets large

▪ On today’s hardware, most algorithms perform quickly for 
small n

 Interested in growth rate as a function of n

▪ Sum an array: linear growth

▪ Check for duplicates: quadratic growth

O(n)

O(n2)



 Express the number of operations in an algorithm as 
a function of n, the problem size

 Briefly

▪ Take the dominant term

▪ Remove the leading constant

▪ Put O( … ) around it

 For example, f(N) = 348n2 – 6956n + 34762

▪ i.e. O(n2)



 Given a function T(n)

▪ Say that T(N) = O(f(n)) if T(n) is at most a constant times f(n)
▪ Except perhaps for some small values of n

 Properties

▪ Constant factors don’t matter

▪ Low-order terms don’t matter

 Rules

▪ For any k and any function f(n), k*f(n) = O(f(n))
▪ e.g., 5n = O(n)

▪ e.g., logan = O(logbn) Do leading constants really not matter?



 Of course leading constants matter

▪ Consider two algorithms
▪ f1(n) = 20n2

▪ f2(n) = 2n2

▪ Algorithm 2 runs ten times faster

 Let's consider machine speed

▪ If machine 1 is ten times faster than machine 2 it will run the 
same algorithm ten times faster

 Big O notation ignores leading constants

▪ It is a hardware independent analysis



 Let's compare two algorithms on two computers
 Computer 1 – Sunway TaihuLight

▪ Speed, 93 petaflops

▪ 93 * 1015 floating point operations per second

▪ 93,000,000 gigaflops

▪ Fastest supercomputer 2016

 Computer 2 – Alienware Area 51

▪ CPU – Intel Core i7 6950X , 98 gigaflops

▪ 98 * 109 floating point operations per second

▪ 2016 Gaming PC

 The TaihuiLight is approximately 1,000,000 times faster



 Let's compare two algorithms on two computers

 Algorithm 1 – nested loop duplicate check

▪ f1(n) = 3/2n2 + 5/2n + 3

 Algorithm 2 – a different duplicate check algorithm

▪ f2(n) = 30n * log2(n) + 5n + 4

 Not only is the TaihuLight much faster but it's 

algorithm has a much smaller leading constant

▪ 3/2 versus 30



 Conclusions

▪ Area 51 running the algorithm with 
the smaller dominant term is faster

▪ For large values of n

▪ A slower computer with smaller O 
algorithm is faster

▪ The nlog(n) algorithm does not grow 
as fast as the n2 algorithm

▪ The slower the function grows the 
faster the algorithm

▪ With n2 an increase in size of 10x increases 
running time by 100x

▪ With nlog(n) an increase in size of 10x 
increases running time by just over 10x

n TaihuLight Area 51

100,000 161 ns 514 µs

106 16 µs 6 ms

107 1.61 ms 72 ms

108 161 ms 819 ms

109 16 s 9 s

1010 27 mins 102 s

1011 45 hrs 19 mins

1012 187 days 3.4 hrs

1013 51 years 1.5 days





 We often use the worst-case behavior as a 
benchmark

 Derive the number of instructions as a function of 
the input size, n

▪ Can use the time command to measure for values of n

▪ Or count the number of operations

 Use Big O to express the growth rate

▪ Compare algorithms behaviour as n gets large

▪ Remove leading constants

▪ Hardware independent analysis
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 Leading constants are affected by

▪ CPU speed

▪ Other tasks performed by the system

▪ Memory characteristics

▪ Program optimization

 Regardless of leading constants

▪ A O(n log(n)) algorithm will outperform a O(n2) algorithm as 
n gets large
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 A well designed and written algorithm can make the 
difference between software being usable or not

▪ n may be very large
▪ Google

▪ Or the number of times a task has to be performed may be 
very large
▪ Google again

▪ Or it may be necessary to have near instanteous response
▪ Real-time systems
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 Algorithms can be optimized

▪ Implemented so as to improve performance
▪ Reducing the number of operations

▪ Replacing slower instructions with faster instructions

▪ Making more efficient of memory

▪ …

 Instead of improving an inherently slow algorithm

▪ Consider if is there is a better algorithm
▪ With a smaller Big O running time

▪ Of course, no such algorithm might exist …



 Given an algorithm, how do you determine its Big O 
growth rate ?

▪ The frequency of the algorithm’s barometer instructions will 
be proportional to its Big-O running time

 Identify the most frequent instruction and count it
 Consider

▪ Loops

▪ Decisions

▪ Function calls



int max10by10(int arr[N][N]) {
int best = 0;
for (int u_row = 0; u_row < N-10; u_row++) {

for (int u_col = 0; u_col < N-10; u_col++) {
int total = 0;
for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {
total += arr[row][col];

}
}
best = max(best, total);

}
}
return best;

}
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10

Barometer instructions

f(N) = 3 x 10 x 10 x (N-10) x (N-10) = O(N)2

10

N-10
N-10



 Function calls are not elementary instructions 

▪ They must be substituted for the Big O running time

int range(int arr[], int n) {

int lo = min(arr, n);

int hi = max(arr, n);

return hi-lo;

}

O(n)

O(n)

O(1)

T(n) = O(n) + O(n) + O(1)

= O(n)



 If … else is not an elementary operation

▪ Take the larger of the running times

▪ Remember ... worst case analysis

int search(int arr[], int n, int key) {

if (!sorted(arr, n)) {

return lsearch(arr, n, key);

} else {

return bsearch(arr, n, key);

}

}

O(n)

=O(n)

O(n)

T(n) = O(n) + max(O(n) + O(log n))

O(log n)

=O(n) + O(n)





 Take the dominant term, remove the leading 
constant and put O( … ) around it

▪ Lower order terms do not matter

▪ Constants do not matter



 Powers of n are ordered according to their exponents

▪ i.e. na = O(nb) if and only if a ≤ b

▪ e.g. n2 = O(n3) but n3 is not O(n2)

 A logarithm grows more slowly than any positive 
power of n greater than 1

▪ e.g. log2 n = O(n1/2) 

▪ Though we say that log2 n = O(log2 n) 
▪ Note that if log n is referred to it is assumed that the base is 2



 Transitivity

▪ If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))

 Addition

▪ f(n) + g(n) = O(max(f(n), g(n)))

 Multiplication

▪ if f1(n) = O(g1(n)) and f2(n) = O(g2(n)) 

▪ then f1(n) * f2(n) = O(g1(n) * g2(n))

 An example

▪ (10 + 5n2)(10log2n + 1) + (5n + log2n)(10n + 2n log2n)



 O(1) – constant time

▪ The time is independent of n, e.g. array look-up

 O(logn) – logarithmic time

▪ Usually the log is to the base 2, e.g. binary search

 O(n) – linear time, e.g. linear search

 O(n log n), e.g. quicksort, mergesort

 O(n2) – quadratic time, e.g. selection sort

 O(nk) , where k is a constant – polynomial

 O(2n) – exponential time, very slow!
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Hard to see what is happening with n so small …



John Edgar 37

n2 and n(n-1)/2 are growing much faster than any of the others
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Hmm!  Let's try a logarithmic scale …
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Notice how clusters of growth rates start to emerge
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