
CMPT 125

 Checking for duplicates
 Maximum density
 Battling computers and algorithms
 Barometer Instructions
 Big O expressions

John Edgar 2

 Write a function to determine if an array contains duplicates

int duplicate_check(int a[], int n) {

int i = n;

while (i > 0) {
i--;

int j = i - 1;

while (j >= 0) {
if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;
}

John Edgar 4

Which statements run most frequently?

The answer depends on the array elements

What is the worst case?

 We often consider the worst case behaviour of an
algorithm as a benchmark

▪ Guarantees performance under all circumstances

▪ Often, but not always, similar to average case behaviour

 Instead of timing an algorithm we can predict
performance by counting the number of operations

▪ Performed by the algorithm in the worst case

▪ Derive total number of operations as a function of the input
size (n)

int duplicate_check(int a[], int n) {

int i = n;

while (i > 0) {
i--;

int j = i - 1;

while (j >= 0) {
if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;
}

John Edgar 6

outside any loop: 2

outer loop: 3n + 1

inner loop: 3i + 1,
for i from n-1 to 1

3/2 n2 + 5/2n + 3

1

n+1

n

n

i+1
i

i

1

= 3/2 n2 – 1/2n

total:

 Graph the check duplicate algorithm running times

▪ Doubling the input size quadruples the running time

▪ A quadratic function

John Edgar 7

n time

10,000 108

25,000 640

50,000 2,427

100,000 8,841

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20,000 40,000 60,000 80,000 100,000

 Given a two dimensional, nxn, array of integers find
the 10x10 swatch with the largest sum

▪ Resource management

▪ Finding brightest areas of photographs

bright spots on Ceres

 Simple approach

▪ Try every possible position for the top-left corner of the
10x10 swatch
▪ There are (n-10)x(n-10) of them

▪ Use a nested loop

 The values in each 10x10 swatch can be summed

▪ Retaining the largest

 A brute-force approach

int max10by10(int arr[N][N]) {
int best = 0;
for (int u_row = 0; u_row < N-10; u_row++) {

for (int u_col = 0; u_col < N-10; u_col++) {
int total = 0;
for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {
total += arr[row][col];

}
}
best = max(best, total);

}
}
return best;

}

John Edgar 11

Total: 348N2 - 6956N + 34762

N
-1

0

N
-1

0

10

11 10

10

Approximate method: count barometer instructions,
the most frequently occurring instructions

Total = 31 x 10 x (N-10) x (N-10) = 310N2

 Empirical timing

▪ Run program on a real machine with various input sizes
▪ Plot a graph to determine the relationship

 Operation counting

▪ Assumes all elementary instructions execute in
approximately the same amount of time

 Actual performance can depend on much more than
just the choice of algorithm

 Actual running time is affected by

▪ CPU speed

▪ Amount of RAM

▪ Specialized hardware (e.g., graphics card)

▪ Operating system

▪ System configuration (e.g., virtual memory)

▪ Programming Language

▪ Algorithm Implementation

▪ Other Programs

▪ …

 There can be many ways to solve a problem

▪ Different algorithms that produce the same result
▪ There are numerous sorting algorithms

 Compare algorithms by their behaviour for large
input sizes, i.e., as n gets large

▪ On today’s hardware, most algorithms perform quickly for
small n

 Interested in growth rate as a function of n

▪ Sum an array: linear growth

▪ Check for duplicates: quadratic growth

O(n)

O(n2)

 Express the number of operations in an algorithm as
a function of n, the problem size

 Briefly

▪ Take the dominant term

▪ Remove the leading constant

▪ Put O(…) around it

 For example, f(N) = 348n2 – 6956n + 34762

▪ i.e. O(n2)

 Given a function T(n)

▪ Say that T(N) = O(f(n)) if T(n) is at most a constant times f(n)
▪ Except perhaps for some small values of n

 Properties

▪ Constant factors don’t matter

▪ Low-order terms don’t matter

 Rules

▪ For any k and any function f(n), k*f(n) = O(f(n))
▪ e.g., 5n = O(n)

▪ e.g., logan = O(logbn) Do leading constants really not matter?

 Of course leading constants matter

▪ Consider two algorithms
▪ f1(n) = 20n2

▪ f2(n) = 2n2

▪ Algorithm 2 runs ten times faster

 Let's consider machine speed

▪ If machine 1 is ten times faster than machine 2 it will run the
same algorithm ten times faster

 Big O notation ignores leading constants

▪ It is a hardware independent analysis

 Let's compare two algorithms on two computers
 Computer 1 – Sunway TaihuLight

▪ Speed, 93 petaflops

▪ 93 * 1015 floating point operations per second

▪ 93,000,000 gigaflops

▪ Fastest supercomputer 2016

 Computer 2 – Alienware Area 51

▪ CPU – Intel Core i7 6950X , 98 gigaflops

▪ 98 * 109 floating point operations per second

▪ 2016 Gaming PC

 The TaihuiLight is approximately 1,000,000 times faster

 Let's compare two algorithms on two computers

 Algorithm 1 – nested loop duplicate check

▪ f1(n) = 3/2n2 + 5/2n + 3

 Algorithm 2 – a different duplicate check algorithm

▪ f2(n) = 30n * log2(n) + 5n + 4

 Not only is the TaihuLight much faster but it's

algorithm has a much smaller leading constant

▪ 3/2 versus 30

 Conclusions

▪ Area 51 running the algorithm with
the smaller dominant term is faster

▪ For large values of n

▪ A slower computer with smaller O
algorithm is faster

▪ The nlog(n) algorithm does not grow
as fast as the n2 algorithm

▪ The slower the function grows the
faster the algorithm

▪ With n2 an increase in size of 10x increases
running time by 100x

▪ With nlog(n) an increase in size of 10x
increases running time by just over 10x

n TaihuLight Area 51

100,000 161 ns 514 µs

106 16 µs 6 ms

107 1.61 ms 72 ms

108 161 ms 819 ms

109 16 s 9 s

1010 27 mins 102 s

1011 45 hrs 19 mins

1012 187 days 3.4 hrs

1013 51 years 1.5 days

 We often use the worst-case behavior as a
benchmark

 Derive the number of instructions as a function of
the input size, n

▪ Can use the time command to measure for values of n

▪ Or count the number of operations

 Use Big O to express the growth rate

▪ Compare algorithms behaviour as n gets large

▪ Remove leading constants

▪ Hardware independent analysis

John Edgar 23

 Leading constants are affected by

▪ CPU speed

▪ Other tasks performed by the system

▪ Memory characteristics

▪ Program optimization

 Regardless of leading constants

▪ A O(n log(n)) algorithm will outperform a O(n2) algorithm as
n gets large

John Edgar 24

 A well designed and written algorithm can make the
difference between software being usable or not

▪ n may be very large
▪ Google

▪ Or the number of times a task has to be performed may be
very large
▪ Google again

▪ Or it may be necessary to have near instanteous response
▪ Real-time systems

John Edgar 25

 Algorithms can be optimized

▪ Implemented so as to improve performance
▪ Reducing the number of operations

▪ Replacing slower instructions with faster instructions

▪ Making more efficient of memory

▪ …

 Instead of improving an inherently slow algorithm

▪ Consider if is there is a better algorithm
▪ With a smaller Big O running time

▪ Of course, no such algorithm might exist …

 Given an algorithm, how do you determine its Big O
growth rate ?

▪ The frequency of the algorithm’s barometer instructions will
be proportional to its Big-O running time

 Identify the most frequent instruction and count it
 Consider

▪ Loops

▪ Decisions

▪ Function calls

int max10by10(int arr[N][N]) {
int best = 0;
for (int u_row = 0; u_row < N-10; u_row++) {

for (int u_col = 0; u_col < N-10; u_col++) {
int total = 0;
for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {
total += arr[row][col];

}
}
best = max(best, total);

}
}
return best;

}

John Edgar 28

10

Barometer instructions

f(N) = 3 x 10 x 10 x (N-10) x (N-10) = O(N)2

10

N-10
N-10

 Function calls are not elementary instructions

▪ They must be substituted for the Big O running time

int range(int arr[], int n) {

int lo = min(arr, n);

int hi = max(arr, n);

return hi-lo;

}

O(n)

O(n)

O(1)

T(n) = O(n) + O(n) + O(1)

= O(n)

 If … else is not an elementary operation

▪ Take the larger of the running times

▪ Remember ... worst case analysis

int search(int arr[], int n, int key) {

if (!sorted(arr, n)) {

return lsearch(arr, n, key);

} else {

return bsearch(arr, n, key);

}

}

O(n)

=O(n)

O(n)

T(n) = O(n) + max(O(n) + O(log n))

O(log n)

=O(n) + O(n)

 Take the dominant term, remove the leading
constant and put O(…) around it

▪ Lower order terms do not matter

▪ Constants do not matter

 Powers of n are ordered according to their exponents

▪ i.e. na = O(nb) if and only if a ≤ b

▪ e.g. n2 = O(n3) but n3 is not O(n2)

 A logarithm grows more slowly than any positive
power of n greater than 1

▪ e.g. log2 n = O(n1/2)

▪ Though we say that log2 n = O(log2 n)
▪ Note that if log n is referred to it is assumed that the base is 2

 Transitivity

▪ If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))

 Addition

▪ f(n) + g(n) = O(max(f(n), g(n)))

 Multiplication

▪ if f1(n) = O(g1(n)) and f2(n) = O(g2(n))

▪ then f1(n) * f2(n) = O(g1(n) * g2(n))

 An example

▪ (10 + 5n2)(10log2n + 1) + (5n + log2n)(10n + 2n log2n)

 O(1) – constant time

▪ The time is independent of n, e.g. array look-up

 O(logn) – logarithmic time

▪ Usually the log is to the base 2, e.g. binary search

 O(n) – linear time, e.g. linear search

 O(n log n), e.g. quicksort, mergesort

 O(n2) – quadratic time, e.g. selection sort

 O(nk) , where k is a constant – polynomial

 O(2n) – exponential time, very slow!

0

50

100

150

200

250

300

350

400

450

10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 36

Hard to see what is happening with n so small …

John Edgar 37

n2 and n(n-1)/2 are growing much faster than any of the others

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 38

Hmm! Let's try a logarithmic scale …

0

200000000000

400000000000

600000000000

800000000000

1000000000000

1200000000000

10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 39

Notice how clusters of growth rates start to emerge

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

100000000000

1000000000000

10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

