
CMPT 125

 Arrays
 Arrays and pointers
 Loops and performance
 Array comparison
 Strings

John Edgar 2

 Python

 a sequence of data

 access elements with [index]

 index from [0] to [len-1]

 dynamic length

 heterogeneous types

 has methods

 C

 a sequence of data

 access elements with [index]

 index from [0] to [len-1]

 fixed length

 homogeneous types

 has no methods

John Edgar 4

 Declare an array with its type and []s after the name
 int scores[4];

 Then set values using an index

 scores[0] = 5;

 scores[1] = 3;

 scores[2] = 7;

 scores [3] = 4;
 Alternatively declare and initialize arrays in one
 int scores[4] = {5, 3, 7, 4};

 Can only be used on declaration
▪ Can not be used to set values on existing arrays

John Edgar 5

length of the array

 If an array is not initialized it will contain garbage
values

 The bit pattern that happens to be stored in the array
elements' memory locations

 The sizeof function can be used to find
the length of an array

 But only for static arrays

int arr[10];

for(int i = 0; i < sizeof(arr) / sizeof(int); ++i){
printf("arr[%d] = %d\n", i, arr[i]);

}

 Be careful not to access an array using an index that
is out of bounds

 Less than zero or greater than array size - 1

 Something undesirable will happen

 It might print garbage

 Or crash

 Python would generate a run-time error

int arr[10] = {0,1,2,3,4,5,6,7,8,9};

for(int i = 0; i <= 10; ++i){
printf("arr[%d] = %d\n", i, arr[i]);

}

 If an array is passed to a function, changes made to it
within the function will persist

 Because an array variable is a constant pointer to the first
element of the array

 So an array parameter actually specifies the address of the
array

 This is still pass by value
▪ Just that the value being passed is a pointer

int sumArray(int arr[], int size)
{

int sum = 0;
for(int i=0; i < size; ++i){

sum += arr[i];
}
return sum;

}

the function could also have been written like
this

int sumArray(int* arr, int size)
{

int sum = 0;
for(int i=0; i < size; ++i){

sum += arr[i];
}
return sum;

}

Since an array variable is a pointer the
two function headers are essentially
identical

But the first makes it explicit that an
array is passed to the function

this correctly prints an
array – why?

this seems OK, assign the address
of the first element of the array to p

dereference p to access
the value it points to

what’s going on here?

void printArray(int arr[], int size)
{

int* p;
for(p = arr; p < arr + size; p++){

printf("%d\n",*p);
}

}

 The preceding example included this statement

 p++; // p is a pointer to an int

 This is an example of pointer arithmetic

 The statement looks like it should add one to the address that p
stores

▪ Making it point to an address that doesn’t match a variable

 However it does not do this, instead it adds the size of an int to
the address stored in p

▪ i.e. 4

 This is another example of operations that behave
differently based on operand type

data 1 2 3 4 2048

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 ...

Pointer arithmetic

int arr[] = {1,2,3,4};

int* p = arr;

variable type address

arr constant int* 2048

p int* 2064

call stack

symbol table

next free byte

data 1 2 3 4 2048

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 ...

data 1 2 3 4 2049

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 ...

Pointer arithmetic

int arr[] = {1,2,3,4};

int* p = arr;

p++;

variable type address

arr constant int* 2048

p int* 2064

call stack

symbol table

next free byte
it looks like this should add one to the value of
p, making it point to the int at address 2049

Fortunately this is not what happens

data 1 2 3 4 2048

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 ...

data 1 2 3 4 2052

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 ...

Pointer arithmetic

int arr[] = {1,2,3,4};

int* p = arr;

p++;

variable type address

arr constant int* 2048

p int* 2064

call stack

symbol table

next free byte
instead, the size of the type of data that p points
to is added to p, making it point to the next int

int sumArray2(int* start, int* end)

{

int sum = 0;

while(start < end){

sum += *start++;

}

return sum;

}

the function would be called like this

sumArray2(arr2, arr2 + ARR_SIZE)

Here is another example of using pointer
arithmetic to iterate through an array

Note that I don’t see any real value in writing
the function like this, and it is fairly hard to
understand unless you have a good
knowledge of pointers

dereferences start, adds the value
to sum then increments start

Note the interesting precedence
rules, 1 (size of an int) is added to
start, not to the variable pointed
to by start

 Assignment, e.g. p = &x

 Pointer type should be compatible with variable

 Dereferencing , e.g. *p = 12

 The *operator accesses the variable that is pointed to

 Arithmetic , e.g. ++p, p += 4, p--

 The amount added to or subtracted from the address is

multiplied by the size (in bytes) of the variable pointed to

 Differencing , e.g. int x = p – q

 The difference in elements between the pointers

▪ i.e. the difference in the addresses of p and q, divided by the size of the

variable pointed to

int arr[4];

int* p;

int* q;

Valid Invalid Notes

p++; arr++ arr is a constant pointer, so the address
stored in arr cannot be changed

q = p + 2; p = p + q; pointer arithmetic allows integers to be
added to pointers, but does not allow
pointers to be added together

 Python iteration

 for i in range (n):

 while <condition>:

 break

 continue

 C iteration

 for(int i=0; i < n; i++) {}

 while (<condition>) {}

 do{} while(<condition>);

 break

 continue

John Edgar 20

The main difference in
syntax is in the for loop

// Prints the factorials from 1 to n

int main()

{

long long factorial = 1;

int n;

printf("Enter an integer: ");

scanf("%d", &n);

for (int i = 1; i <= n; ++i){

factorial = factorial * i;

printf("%d! = %lld\n", i, factorial);

}

}
The loop control statement consists of three statements

initialization condition increment

In this example the loop control variable is also declared
in the initialization statement

condition

Initialization

Increment

true

Loop Body

Rest of
Program

false

 for statements consist of
three expressions
 Separated by ;s

 Initialization

 Executed only once

 Condition

 Tested before each iteration

▪ The last time the condition is
tested there is no iteration

▪ Since the test returns false

 Increment

 Applied after each iteration

 Adding an extra semi-colon
for (int i = 1; i <= n; ++i); {

result = result * i;

printf("%d! = %lld\n", i, factorial);

}
 Forgetting opening and closing brackets
for (int i = 1; i <= n; ++i)

result = result * i;

printf("%d! = %lld\n", i, factorial);
 It is good style to always use brackets even if the

loop body only contains one statement

John Edgar 23

empty loop body

not included in loop body

 Python
def gcd(a, b):

while b != 0:

temp = b

b = a % b

a = temp

return a

 C
int gcd(int a, int b){

while (b != 0) {

int temp = b;

b = a % b;

a = temp;

}

return a;

}

John Edgar 24

While loops in C and Python are very similar

Conditions in C and Python are the same, 0
is treated as false and non-zero as true

 What follows is a few lines of code but it could take a
long time to run

long long total = 0;

for (int i = 1; i <= n; i++) {

total += i;

}

 The running time depends on the value of n

 As n increases the running time increases

 If we add one to n, then the loop iterates one more time

 The relationship between n and running time is linear

John Edgar 25

 We can time programs using the Linux time
command

 time ./a.out

John Edgar 26

n time

100,000,000 253

500,000,000 1,132

1,000,000,000 2,204

2,000,000,000 4,300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1,000 1,500 2,000

MILLIONS

int main () {
int password[3] = {1, 2, 3};
int answer[3];

for (int i = 0; i < 3; i++) {
printf("Enter digit %d: ", i+1);
scanf("%d", answer+i);

}
if (password != answer) {

printf("Incorrect password!\n");
}

}

John Edgar 28

logic error

compares the pointer values (addresses) not the
array elements

 A function to compare two arrays

 Needs to compare pairs of elements from each array

int arrCompare(int arr1[], int arr2[], int length) {

for (int i = 0; i < length; i++) {

if (arr1[i] < arr2[i]) {

return -1;

} else if (arr1[i] > arr2[i]) {
return 1;

}

}

return 0;

}

John Edgar 29

 In C a string is just an array of characters

 A char is a single byte

 That stores an ASCII code

 An array of characters forms a string

 The end of the string is marked with a null character

 '\0' or the ASCII code 0

 So the array must be large enough to hold all of the
characters plus one

John Edgar 31

 It’s easy to print the ASCII code for a character

 char ch = 'x';

 printf("code for %c = %d", ch, ch);

 The first placeholder prints the letter that the code
represents

 The second placeholder prints the code
 C will also allow arithmetic to be performed on char

variables

 The underlying numeric codes are operated on

 Let’s say that we want to print all of the letters from A to Z

 We could write 26 printf statements

▪ printf('A');

▪ printf('B');

▪ ...

 Or we could do this

char ch = 'A';

while(ch < 'A' + 26){

printf("%c\n", ch);

ch++;

}

int main()
{
char name[20];
int age;

printf("What is your name? ");
scanf("%s", name);
printf("What is your age? ");
scanf("%d", &age);

printf("Your name is %s, and your age is %d\n",
name , age);

return 0;
}

things to note

What is your name? Jenny

What is your age? 11

Your name is Jenny, and your age is 11

 The line char name[20]; declares an array of 20
characters

 A sequence in main memory with enough space for twenty
characters

 An array is an ordered sequence of data elements of one
type

 The brackets identify name as an array rather than a
single character

 And 20 indicates the size of the array

... J e n n y \0

A sequence of 2o adjacent bytes in main memory

Why 20 bytes? Because each character is stored in one byte

What 's the \0 in the 6th. byte? A null character to indicate the end of the string

Why is this necessary?
Because memory locations can’t be empty, so it is
important to distinguish between characters we want
to store and garbage values

 A string consists of an array containing the words in
the string and the null character

 Consequently, a string containing a single character
is not the same as a char variable

 The type of a character array is not the same as the
type of a character

 That is char name[20] declares an array not a char

athe character 'a'

athe string "a" \0

 What gets printed?

#define BATMAN "Bruce Wayne"
int main()
{

printf("size of %s = %d\n", BATMAN, strlen(BATMAN));
printf("BATMAN size = %d\n\n", sizeof(BATMAN));
return 0;

}

The difference is the null character

John Edgar 39

returns 0 if the same; < 0 if first < last; >0 if first > last

string functions

no &

#include <stdio.h>
#include <string.h>

int main () {
char password[4] = "abc";
char answer[4];

printf("Enter 3 character code: ");
scanf("%s", answer);

if (strcmp(password, answer) != 0) {
printf("Incorrect password!\n");

}
}

 void strcpy(char dest[], char src[])

 copies source to destination

 The variable name is not preceded by an &

 void strcat(char dest[], char src[])

 appends source to destination

 Actual function header in libraries may differ

 Both these functions are potentially unsafe

 Why?

