
CMPT 125

 Running a C program
 Compilation
 Python and C
 Variables and types
 Data and addresses
 Functions
 Performance

John Edgar 2

 Edit or write your program
 Using a text editor like gedit

 Save program with a .c extension

 Compile your program
 Using gcc

 This generates a.out

 Run your program
 By typing ./a.out

John Edgar 4

 Write your C program using a simple editor

 Like Notepad for Windows, or

 TextEdit for the Mac, or

 gedit for Linux

 gedit, and other editors highlight text for C syntax
 Save your program with a .c extension

 Programs, like variables and functions, should be given
sensible names

John Edgar 5

John Edgar 6

#include <stdio.h>

int main(){

}

#include is like import in Python

When your program is run it calls
the main function

{}s denote a block of code, like
indentation in Python

John Edgar 7

#include <stdio.h>

int main(){
printf("Hello World!\n");

}

printf is the standard output
function – and is in stdio.h

All statements
end with a ;

\n is the newline character, this
statement prints a new line after
the message

 Save your program as a .c file

 Let's say we've called it hello.c

 Compile your program using gcc

 gcc used to stand for Gnu C Compiler

 Now stands for Gnu Compiler Collection

 Open a console window and run gcc at the prompt
 >$ gcc hello.c

 If the command is successful it creates an executable
program called a.out

John Edgar 8

 Run your program at the command prompt
 By entering./a.out

 >$ gcc hello.c

 >$./a.out

 Hello World!

 >$

 When compiling your programs it is useful to name
the output program something sensible
 By using the –o flag

 >$ gcc –o hello hello.c

 Now the program is called hello instead of a.out

John Edgar 9

In Linux using GCC

Source File
(.c)

write in a text
editor

correct errors

compile
Object File

(binary)

Other
Object Files

Executable
File

test

linker links
files

Debugged
Executable

preprocessor
handles

directives

 The Python IDLE editor can be used as an interpreter

 That processes one instruction at a time

 C programs have to be compiled

 A compiler translates the entire program

 Into machine language

 A machine language program can be
directly processed by a computer

 Each instruction is represented in binary

 Machine languages are very hard for humans to read and
write

John Edgar 12

 Assembly languages are higher
level than machine languages

 But lower level than C

 Operation codes are used to
identify instructions

 Memory addresses are given labels
▪ Like very basic variable names

 An assembler translates an
assembly language to machine
language
▪ Where operation codes and memory

addresses are binary

John Edgar 13

.section

__TEXT,__text,regular,pure_instructions

.globl _main

.align 4, 0x90

_main: ## @main

.cfi_startproc

BB#0:

pushq %rbp

Ltmp2:

.cfi_def_cfa_offset 16

Ltmp3:

.cfi_offset %rbp, -16

movq %rsp, %rbp

Ltmp4:

.cfi_def_cfa_register %rbp

subq $16, %rsp

leaq L_.str(%rip), %rdi

movl $0, -4(%rbp)

movb $0, %al

callq _printf

movl $0, %ecx

movl %eax, -8(%rbp) ## 4-byte Spill

movl %ecx, %eax

addq $16, %rsp

popq %rbp

ret

.cfi_endproc

.section __TEXT,__cstring,cstring_liter

als L_.str: ## @.str

.asciz "Hello World!\n"

.subsections_via_symbols

 C is a high level programming language

 It can be compiled into machine code

 And executed on a computer

 Programming languages are formal and lack the
richness of human languages

 If a program is nearly, but not quite syntactically correct
then it will not compile

 The compiler will not “figure it out”

 Python

 print arg1, . . .

 arg1 = raw_input()

 int, float, str, bool, ...

 variables declared during
execution

 and, or, not

 if-elif-else

 for i in range(n)

 indented blocks

 lists may grow/shrink

 C

 printf(format, arg1, . . .)

 scanf(format, &arg1, . . .)

 int, float, char, ...

 variables declared at compile time

 &&, ||, !

 if { } else if { } else { }

 for (i = 0; i < n; i++) { }

 { blocks in curly braces }

 arrays are fixed size

John Edgar 16

 Variables must be declared before being used

int main(){

int a = 5;

int b = 17;

printf("Sum of %d + %d is %d", a, b, a+b);

}

 int a = 5; declares an integer variable named a and
gives it an initial value of 5

 Declaration does not have to include initialization

▪ int a; //declares an integer called a

 Un-initialized variables may have garbage values

John Edgar 18

 The type of a variable in C cannot be changed

 Once a variable is declared as an int it stays an int
▪ Or a char, float, double, etc.

 It is possible to change the type of a variable in Python

 When the program is run space is reserved for
variables in main memory

 Usually 4 bytes for an int or a float

 Usually 8 bytes for a long long or a double

 Usually 1 byte for a char

 Variables are stored in unique locations in memory

 This location is referred to as its address
▪ Which is represented by an integer

 A variable can therefore be described in three ways

 Its type (e.g int)

 Its value (e.g. 42)

 Its address (its main memory location)

 Sometimes a program need to explicitly use the
address of a variable

 When a program runs it requires main
memory (RAM) space for

 Program instructions (the program)

 Data required for the program

 There needs to be a system for
efficiently allocating memory

 We will only consider how memory is
allocated to program data (variables)

code
storage

data storage

 RAM can be considered as a long sequence of bytes

 Starting with 0

 Ending with the amount of main memory (-1)

 RAM is addressable and supports random access

 That is, we can go to byte 2,335,712 without having to visit
all the preceding bytes

0 1 2 3 4 5 6 7 8

… 1073741816 1073741817 1073741818 1073741819 1073741820 1073741821 1073741822 1073741823

*1 GB = 1,073,741,824 bytesConsider a computer with 1GB * of RAM

This is a simplified and abstract illustration

9 10 11 12 13 14 15 16 …

RAM can be considered as a sequence of bytes, addressed by their position

 Declaring a variable reserves space for the variable in
main memory

 The amount of space is determined by the type

 The name and location of variables are recorded in
the symbol table

 The symbol table is also stored in RAM

 The symbol table allows the program to find the address of
variables
▪ We will pretty much ignore it from now on!

data

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

For simplicity's sake assume that each address is in bytes and
that memory allocated to the program starts at byte 2048

int x, y;

x = 223;

x = 17;

Creates entries in the symbol
table for x and y

data

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

data 223

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

data 17

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

These lines change the values stored in x and
y, but do not change the location or amount of
main memory that has been allocated

variable address

x 2048

y 2052

y = 3299;

data 17 3299

address 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 ...

 Variables are stored in main memory

 We can find out the value of a variable

 And its address

▪ To retrieve the address write the variable name preceded by an

ampersand (&)

 The value of a variable can be changed by

assignment

 But its storage location and the amount of memory

allocated to a variable cannot change

 We can use the printf function to print the value of a

variable, or its address

 int x = 12;

 printf("x = %d, ", x);

 printf("the address of x is %d", &x);

 Here is another example

 float y = 2.13;

 printf(“y = %f, ", y);

 printf("the address of y is %d", &y);

I wouldn't usually use x or y as the name of a
variable since it doesn't convey any meaning, but in
this example they are just arbitrary values

Note the use of %f to print a floating point value,
and also note that the address of y is still an integer
so its format specification is still %d

 A variable can be declared that stores the address of
another variable

 Such variables are referred to as pointers

 Pointers are declared with the type of the variable they
point to followed by an *

 Pointers are used for a number of reasons including

 Passing addresses to functions
▪ The first example of this is the input function, scanf

 Declaring pointers to arrays in dynamic memory

 The scanf function requires the address of the
variable that input is to be stored in

int main(){

int a = 0, b = 0;

printf("Enter an integer: ");

scanf("%d", &a);

printf("Enter another integer: ");

scanf("%d", &b);

printf("Sum of %d + %d is %d", a, b, a+b);

}

 Functions must be defined outside main

 Note that main is itself a function

 Function anatomy

int gcd(int a, int b){

while (b != 0){

int temp = b;

b = a % b; // remainder of a divided by b

a = temp;

}

return a;
}

John Edgar 32

return type

function name

return statement

parameter list

 All C functions are pass by value

 Data in the argument is copied to the parameter
▪ The scope of the parameter is the scope of its function

 This prevents side-effects, where the function can
unexpectedly modify data passed to it

 Functions in Python are pass by reference

 Which can result in side-effects but only when the data is
mutable

 Java is a mix of pass by value and pass by reference

John Edgar 33

 Let's say we want to write a function to swap the
values in two variables

 Here is a first attempt

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

Does this work?

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code (in main)
int a = 23;
int b = 37;
swap(a, b);

23

a

37

b

x and y are parameters of the
swap function so have their own
space in main memory

23

x

37

y

23 372337

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code (in main)
int a = 23;
int b = 37;
swap(a, b);

23

tempx y

23

a

37

b

once swap has executed its
memory is released

37

x

23

y

23

temp

note that neither a nor b's values
have changed, so the swap function
achieved nothing!

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

// Calling code (in main)
int a = 23;
int b = 37;
swap(a, b);

23

a

37

b

 Remember that scanf accepts the address of a
variable as an argument

 And that the value of the variable is changed once scanf has
finished its execution

 We can specify an address using &

 A function definition also needs to specify that it expects an
address
▪ Note that the address of a float is not the same as a float

void swap(int* x, int* y)
{

int temp = *x;
*x = *y;
*y = temp;

}

// Calling code
int a = 23;
int b = 37;
swap(&a, &b);

x and y contain the addresses of a
and b, not their values

x y

23

a

37

b

23

temp

void swap(int* x, int* y)
{

int temp = *x;
*x = *y;
*y = temp;

}

// Calling code
int a = 23;
int b = 37;
swap(&a, &b);

x y

23

a

37

b

37 23

2337

void swap(int* x, int* y)
{

int temp = *x;
*x = *y;
*y = temp;

}

// Calling code
int a = 23;
int b = 37;
swap(&a, &b);

23

tempx ya b

once swap has executed its
memory is released

Because swap's parameters are passed
addresses a and b have changed

 The * is used to mean a number of different things,

dependent on the context

 Multiplication

 Declaration of a pointer variable, when used after a type

name

▪ int * p; declares a pointer called p that will store the address of an int

 Dereferencing of a pointer to access the variable that it

points to

▪ *p = 7; assigns 7 to the int that p points to

 Pointers store addresses

 Addresses are always the same size on the same system

 So why do we have to say what type of data is going
to be pointed to?

 To reserve enough space for the data and

 To ensure that the appropriate operations are used with the
data

 Pointer variable are identified by an * that follows
the type in the declaration
 int * p;

 This declares a variable called p that will point to (or
refer to) an integer

 Note that the type of a pointer is not the same as the
type it points to

 p is a pointer to an int, and not an int

 The operation shown below is unsafe
 int x = 12;

 int *p = x;

 Remember that the type of p is an address (to an int),
and not an int

 Addresses are actually whole numbers but assigning
arbitrary numbers to them is a bad idea

 Since a programmer is unlikely to know what is stored at a
particular memory address

This is not a good thing to do and will
result in a compiler warning or error

 Pointers can be assigned the address of an existing
variable

 Using the address operator, &

 In this way it is possible to make a pointer refer to a variable

 Pointers can be used to access variables

 But only after they have been assigned the address of a
variable

 To change the value of a variable a pointer points to
the pointer has to be dereferenced

 Using the * operator which can be thought of meaning the
variable pointed to

int x = 5;
int *p = &x; //assign p the address of x
// Use p to assign 23 to x
*p = 9; //dereferences p
printf("value in x = %d\n", x);
printf("address of x = %x\n", &x);
printf("value in p = %x\n", p);
printf("address of p = %x\n", &p);
printf("value in *p = %d\n\n", *p);

int x = 12;
int y = 77;
int *p1 = &x; //assign p1 the address of x
int *p2 = &y; //assign p2 the address of y

p1

p2

12

77

x

y

int x = 12;
int y = 77;
int *p1 = &x; //assign p1 the address of x
int *p2 = &y; //assign p2 the address of y
p1 = p2; //assigns the address in p2 to p1

p1

p2

12

77

x

y

1277

int x = 12;
int y = 77;
int *p1 = &x; //assign p1 the address of x
int *p2 = &y; //assign p2 the address of y
*p1 = *p2;

p1

p2 77

x

y

 In practice we don't often use pointers like the
preceding examples

 Pointers can be used to allow functions to change
the value of their arguments

 They are also key to managing memory for objects
that change size during run-time

 Such objects are allocated space in another area of main
memory – in dynamic memory

 There are several measures
 Is it:

 Correct (no bugs)?

 Reliable?

 Efficient?

 Affordable?

 Maintainable?

 Easy to use?

John Edgar 54

 When we assess the performance of an algorithm we
focus on its efficiency

 There are two main measures of efficiency

 Time

 Space (in main memory)

 Recently, time is considered to be the more
important of these two

 Memory is fairly cheap

 Memory space is not usually a constraint
▪ There are exceptions to this

John Edgar 55

 There are two main ways to measure performance
 Time the code on a variety of inputs

 We can plot graphs and predict behavior

 This measure is hardware dependent

 Count the number of operations performed by the
algorithm

 We can plot graphs or derive functions or
▪ Use the big-O estimate

 This measure is hardware independent

John Edgar 56

