# **Insertion Sort**

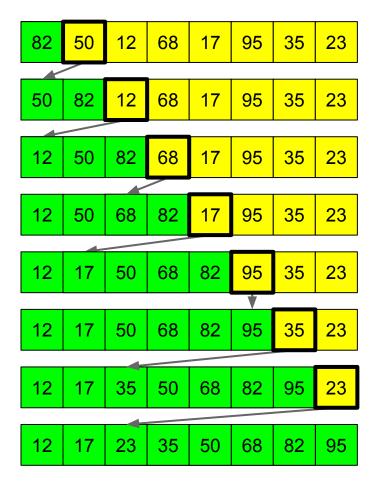
# Lecture 10

Today

• Insertion Sort

# **Insertion Sort Algorithm**

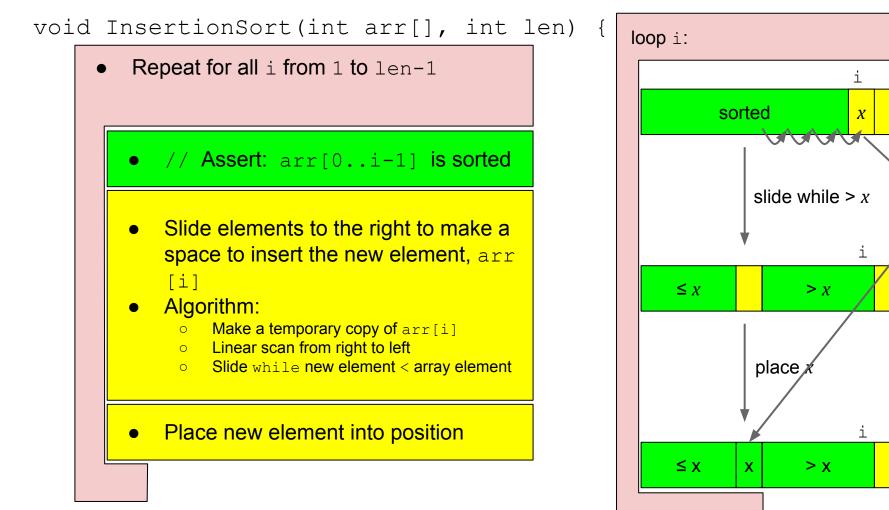
Strategy:


- Insert one element at a time into a sorted list
  - Locate the insertion point
  - Slide array elements to make space while new element < array element</li>



- Array divided into two parts: sorted and unsorted (like Selection Sort)
- Sorted part grows one at a time (like Selection Sort)

### **Insertion Sort Demo**


#### Sort this array using Insertion Sort:



| create insertion point in | 0 slides | Total number of slides depends on the initial order of |
|---------------------------|----------|--------------------------------------------------------|
| create insertion point in | 1 slide  | the input.                                             |
| create insertion point in | 2 slides |                                                        |
| create insertion point in | 1 slide  | What's the worst case for array of length <i>N</i> ?   |
| create insertion point in | 3 slides |                                                        |
| create insertion point in | 0 slides | What's the best                                        |
| create insertion point in | 4 slides | case?                                                  |
|                           |          |                                                        |

create insertion point in 5 slides

# Insertion Sort in Pseudocode + Assertion Analysis



X

# **Analysis of Insertion Sort**

What's the worst case behaviour on an array of length *N*?

OR . . .

What's the barometer instruction?

Inner loop could be executed i times

• i slides per loop  $\Rightarrow O(N^2)$  total slides (in the worst case)

What sort of input leads to the worst case?

• when input array is reverse sorted

# **Analysis of Insertion Sort**

What's the *best* case?

- When the input array is sorted
- Inner loop executed 0 times  $\Rightarrow$  0 slides

Does this mean a running time of O(0)?

- while condition is entry condition (always performed at least once)
- So, O(N) comparisons in the best case
  - to verify the array is indeed sorted

# Conclusions

- Insertion Sort algorithm varies greatly with nature of input
  - Worst case  $O(N^2)$  vastly differs from best case O(N)
  - Which case carries more meaning?
- Selection Sort vs Insertion Sort
  - are incremental sorts
  - have same asymptotic running times
- Best sorting algorithms run in *O*(*N*log*N*)
  - New paradigm: Divide & Conquer