
Algorithm Performance
(the Big-O)



Lecture 6

Today:
● Worst-case Behaviour
● Counting Operations
● Performance Considerations
● Time measurements
● Order Notation (the Big-O)



Pessimistic Performance Measure

● Often consider the worst-case behaviour as 
a benchmark.
○ make guarantees about code performance under all 

circumstances

● Can predict performance by counting the 
number of “elementary” steps required by 
algorithm in the worst case
○ derive total steps (T) as a function of input size (N)



Analysis of dup_chk()
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Q.  What is N?
● The number of 

elements in the array

Outside of loop:  2 (steps)

Outer loop:  3N + 1

Grand total = 3/2 N2 + 5/2 N + 3

Inner loop: 3i + 1 for all 
possible i from 0 to N - 1.

= 3/2 N2 - 1/2 N

A quadratic function!
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int dup_chk(int a[], int length) {

int i = length;

while (i > 0) {
i--;

int j = i - 1;

while (j >= 0) {
if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;
}



● Another graph - a quadratic this time!
● Confirms predictions:  doubling (x2) the 

input size leads to quadrupling (x4) the 
running time

Empirical Measurement

N time (in ms)

   10,000 89

   20,000 365

   40,000 1,424

 100,000 9,011

N

time



2D Maximum Density Problem

Problem:  Given a 2-dimensional array (NxN) of 
integers, find the 10x10 swatch that yields the 
largest sum.

Applications:
● Resource management 

and optimization
● Finding brightest areas of 

photos 



Algorithm / Code?

● Simple approach:  Try all possible 
positions for the upper left corner
○ (N-10)x(N-10) of them
○ use a nested loop

● Total each swatch using a 10x10 nested 
loop

● A brute-force approach!
○ Generate a possible solution [naively]
○ Test it [naively]



In C Precise accounting:

348N2 - 6956N + 34762 operations

Approximate Method:

Count the barometer instructions, the 
instructions executed most frequently.  
Usually, in the innermost loop.

10

11 10

Innermost loop: 11 + 10 + 10 = 31 ops

Total = 31
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x(N-10)=310N2

int max10by10(int a[N][N]) {

int best = 0;

for (int u_row = 0; u_row < N-10; u_row++) {

for (int u_col = 0; u_col < N-10; u_col++) {

int total = 0;

for (int row = u_row; row < u_row+10; row++) {
for (int col = u_col; col < u_col+10; col++) {

total += a[row][col];

}

}

best = max(best, total);

}

}

return best;

}



Which Performance Measurement?

● Empirical timings
○ run your code on a real machine with various input sizes
○ plot a graph to determine the relationship

● Operation counting
○ assumes all elementary instructions are created equal

● Actual performance can depend on much more 
than just your algorithm!



Running Time is Affected By . . .

● CPU speed
● Amount of main memory
● Specialized hardware (e.g., graphics card)
● Operating system
● System configuration (e.g., virtual memory)
● Programming Language
● Algorithm Implementation
● Other Programs
● . . .



Comparing Algorithm Performance

● There can be many ways to solve a problem, 
i.e., different algorithms that produce the 
same result
○ e.g., There are numerous sorting algorithms.

● Compare algorithms by their behaviour for 
large input sizes, i.e., as N gets large
○ On today’s hardware, most algorithms perform 

quickly for small N
● Interested in growth rate as a function of N

○ e.g., Sum an array:  linear growth
○ e.g., Check for duplicates:  quadratic growth

= O(N)
= O(N2)



Order Notation (the Big-O)

O(N2)● E.g., f(N) = 348N2 - 6956N + 34762

● Suppose we express the number of operations 
used in our algorithm as a function of N, the 
size of the problem 

● Intuitively, take the dominant term, remove the 
leading constant, and put O( . . . ) around it



Formalities of the Big-O
● Given a function T(N), we say T(N) = O(f(N)) 

if T(N) is at most a constant times f(N), 
except perhaps for some small values of N

● Properties:
○ constant factors don’t matter
○ low-order terms don’t matter

● Rules:
○ For any k and any function f(N), k·f(N) = O(f(N))

■ e.g., 5N = O(N)
■ e.g., logaN = O(logbN) - why?
■ Q. Do leading constants really not matter?



Of course, constant factors affect performance
● e.g., If two different algorithms run in f1(N) = 20N2 

and f2(N) = 2N2, respectively, you would expect 
Algorithm 2 to run 10 times faster

● e.g., Similarly, a 10x faster machine running 
Algorithm 1 would have the same running time

● Big-O hides leading constants - a hardware 
independent analysis

iMac Desktop Personal Computer (2011)

40 x 109 instructions per second
runs an unoptimized, different dup_chk ( )
f(N) = 30N logN + 5N + 4

Cray Supercomputer

17.6 x 1015 instructions per second
runs optimized dup_chk( ) code from last time
f(N) = 3/2 N2 + 5/2 N + 3

Leading Constants - Experiment

vs



Experimental Results
Conclusions:

● Cray runs O(N2) algorithm

● iMac runs O(N logN) algorithm which runs faster than 

Cray for large N (109 and beyond)

● Thus slow computer + no opt + O(N logN)      >>

fast computer + optimization + O(N2) algorithm

● Rule of Thumb:  The slower the function grows, 

the faster the algorithm

N iMac Cray

100,000 1.2 ms 850 ns

85 μs106 15 ms

8.5 ms107 0.2 s

0.85 s108 2 s

1.75 min109 22 s

2:22 hr1010 4.2 min

10 days1011 56 min

 2.71012 8:20 hr years

● For the O(N2) Cray, a 10x increase in N leads to 

roughly a 100x increase in running time

● For the O(N logN) iMac, a 10x increase in N leads to 

roughly a 10x increase in running time (for the N), plus 

a little (for the logN)
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