
Algorithm Performance
(the Big-O)

Lecture 6

Today:
● Worst-case Behaviour
● Counting Operations
● Performance Considerations
● Time measurements
● Order Notation (the Big-O)

Pessimistic Performance Measure

● Often consider the worst-case behaviour as
a benchmark.
○ make guarantees about code performance under all

circumstances

● Can predict performance by counting the
number of “elementary” steps required by
algorithm in the worst case
○ derive total steps (T) as a function of input size (N)

Analysis of dup_chk()

1

N + 1

N

N

i + 1
i

i

Q. What is N?
● The number of

elements in the array

Outside of loop: 2 (steps)

Outer loop: 3N + 1

Grand total = 3/2 N2 + 5/2 N + 3

Inner loop: 3i + 1 for all
possible i from 0 to N - 1.

= 3/2 N2 - 1/2 N

A quadratic function!

1

int dup_chk(int a[], int length) {

int i = length;

while (i > 0) {
i--;

int j = i - 1;

while (j >= 0) {
if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;
}

● Another graph - a quadratic this time!
● Confirms predictions: doubling (x2) the

input size leads to quadrupling (x4) the
running time

Empirical Measurement

N time (in ms)

 10,000 89

 20,000 365

 40,000 1,424

 100,000 9,011

N

time

2D Maximum Density Problem

Problem: Given a 2-dimensional array (NxN) of
integers, find the 10x10 swatch that yields the
largest sum.

Applications:
● Resource management

and optimization
● Finding brightest areas of

photos

Algorithm / Code?

● Simple approach: Try all possible
positions for the upper left corner
○ (N-10)x(N-10) of them
○ use a nested loop

● Total each swatch using a 10x10 nested
loop

● A brute-force approach!
○ Generate a possible solution [naively]
○ Test it [naively]

In C Precise accounting:

348N2 - 6956N + 34762 operations

Approximate Method:

Count the barometer instructions, the
instructions executed most frequently.
Usually, in the innermost loop.

10

11 10

Innermost loop: 11 + 10 + 10 = 31 ops

Total = 31

x10

x10

x(N-10)

x(N-10)

x(N-10)

x(N-10)=310N2

int max10by10(int a[N][N]) {

int best = 0;

for (int u_row = 0; u_row < N-10; u_row++) {

for (int u_col = 0; u_col < N-10; u_col++) {

int total = 0;

for (int row = u_row; row < u_row+10; row++) {
for (int col = u_col; col < u_col+10; col++) {

total += a[row][col];

}

}

best = max(best, total);

}

}

return best;

}

Which Performance Measurement?

● Empirical timings
○ run your code on a real machine with various input sizes
○ plot a graph to determine the relationship

● Operation counting
○ assumes all elementary instructions are created equal

● Actual performance can depend on much more
than just your algorithm!

Running Time is Affected By . . .

● CPU speed
● Amount of main memory
● Specialized hardware (e.g., graphics card)
● Operating system
● System configuration (e.g., virtual memory)
● Programming Language
● Algorithm Implementation
● Other Programs
● . . .

Comparing Algorithm Performance

● There can be many ways to solve a problem,
i.e., different algorithms that produce the
same result
○ e.g., There are numerous sorting algorithms.

● Compare algorithms by their behaviour for
large input sizes, i.e., as N gets large
○ On today’s hardware, most algorithms perform

quickly for small N
● Interested in growth rate as a function of N

○ e.g., Sum an array: linear growth
○ e.g., Check for duplicates: quadratic growth

= O(N)
= O(N2)

Order Notation (the Big-O)

O(N2)● E.g., f(N) = 348N2 - 6956N + 34762

● Suppose we express the number of operations
used in our algorithm as a function of N, the
size of the problem

● Intuitively, take the dominant term, remove the
leading constant, and put O(. . .) around it

Formalities of the Big-O
● Given a function T(N), we say T(N) = O(f(N))

if T(N) is at most a constant times f(N),
except perhaps for some small values of N

● Properties:
○ constant factors don’t matter
○ low-order terms don’t matter

● Rules:
○ For any k and any function f(N), k·f(N) = O(f(N))

■ e.g., 5N = O(N)
■ e.g., logaN = O(logbN) - why?
■ Q. Do leading constants really not matter?

Of course, constant factors affect performance
● e.g., If two different algorithms run in f1(N) = 20N2

and f2(N) = 2N2, respectively, you would expect
Algorithm 2 to run 10 times faster

● e.g., Similarly, a 10x faster machine running
Algorithm 1 would have the same running time

● Big-O hides leading constants - a hardware
independent analysis

iMac Desktop Personal Computer (2011)

40 x 109 instructions per second
runs an unoptimized, different dup_chk ()
f(N) = 30N logN + 5N + 4

Cray Supercomputer

17.6 x 1015 instructions per second
runs optimized dup_chk() code from last time
f(N) = 3/2 N2 + 5/2 N + 3

Leading Constants - Experiment

vs

Experimental Results
Conclusions:

● Cray runs O(N2) algorithm

● iMac runs O(N logN) algorithm which runs faster than

Cray for large N (109 and beyond)

● Thus slow computer + no opt + O(N logN) >>

fast computer + optimization + O(N2) algorithm

● Rule of Thumb: The slower the function grows,

the faster the algorithm

N iMac Cray

100,000 1.2 ms 850 ns

85 μs106 15 ms

8.5 ms107 0.2 s

0.85 s108 2 s

1.75 min109 22 s

2:22 hr1010 4.2 min

10 days1011 56 min

 2.71012 8:20 hr years

● For the O(N2) Cray, a 10x increase in N leads to

roughly a 100x increase in running time

● For the O(N logN) iMac, a 10x increase in N leads to

roughly a 10x increase in running time (for the N), plus

a little (for the logN)

Acknowledgement

These slides are the work of Brad Bart (with
minor modifications)

