Merge Sort

Basics

m Merge sort is usually described recursively.

m 'The recursive calls work on smaller and smaller
part of the list.

m Idea:
1. Split the list into two halves.
2. Recursively sort each half.

3. “Merge” the two halves into a single sorted list.

Example

6 7 8 9 10 11 12
2987741 2]37]81]

0 1 2 3 4 5
[17] 8 [75]23]14]95

1. Split:
0 1 2 3 4 5 6 7 8 9 10 11 12
[17]8]75]23]14]95]29] [87[74]-1][-2[37]81]

2, Recursivelzy soft:
0 1 3 4 5 6 7 8 9 12

10 11
8 [14]17]23]29]75[95] [-2]-1[37]74]81]87]

3. Merge?

Example Merge

0 1 2 3 4 5 6 7 8 9 0 11 12
[8[14]17]23]29]75]95] [2]-1]37]74]81]87]

0 1 2 3 4 5 6 7 8 9 10 11 12
[2[-1]8]14]17]23]29]37[74][75]81[87]95

m Must put the next-smallest element into the
merged list at each step.

m each “next-smallest” could come from either
half

Merge Sort Algorithm

mergeSort(array, first, last):
/I sort array([first] to array[last-1]
if last - first < 1:

return // arrays of length O, 1 are already sorted

mid = (first + last)/2
mergeSort(array, first, mid) // recursive call 1
mergeSort(array, mid, last) // recursive call 2
merge(array, first, mid, last)

Merge Algorithm (incorrect)

merge(array, first, mid, last):
// merge array|[first to mid-1] and array[mid to last-1]
leftpos = first
rightpos = mid
for newpos from O to last-first:
if array[leftpos] < array[rightpos]:
newarray[newpos] = array|[leftpos]
leftpos++
else:
newarray[newpos] = array[rightpos]
rightpos++
copy newarray to array|[first to last-1]

Problem?

m This algorithm starts correctly, but has an error
as it finishes.
m Hventually, one of the halves will empty.
® Then, the “if” will compare against ???
m the element past the end of one of the halves
= onc of L1 Tesfe][T [T J#
¥ *
leftpos rightpos

I ENES

leftpos rightpos

Solution

® Must prevent this: we can only look at the
correct parts of the array.

m So, compare only until we reach the end of one
half.

m Then, just copy the rest over.

Corrected Merge Algorithm (1)

merge(array, first, mid, last):
leftpos = first
rightpos = mid
newpos =0
while leftpos < mid and rightpos < last-1:
if array[leftpos] < array[rightpos]:
newarray[newpos] = array[leftpos]
leftpos++; newpos++
else:
newarray[newpos] = array[rightpos]
rightpos++; newpos++

(continues)

Corrected Merge Algorithm (2)

merge(array, first, mid, last):
.../l code from last slide

while leftpos < mid: // copy rest of left half (if any)
newarray[newpos] = array[leftpos]
leftpos++; newpos++

while rightpos < last-1: // copy rest of right half (if any)
newarray[newpos] = array[rightpos]
rightpos++; newpos++

copy newarray to array/[first to (last-1)]

Example 1

merge(array, 3,7, 11):

3 4 5 6 7 8 9 10
array: [10]20]40]50][30]40]60][70]

0 1 2 3 4
newarray: | 10 [20 304040

5 6 7
5060 70]

leftpos:
rightpos: 11
newpos: 8

compare loop lefe fill right fill

Example 2

merge(array, 8, 12, 15):

8 9 10 11 12 13 14 15
array: [50]60]70]80][10]20[30]40]

-

0 1 2 3 4 5 6 7
newarray: | 10[20]30[405060 70]80]
leftpos: ¥ Y10 12
rightpos: Y15 1418 16 %

newpos: /6/2//5//,5/%,7/8
t

compare loop lefe il right fill

Running Time

m What is merge sort’s running time?
m recursive calls X work per call?

m yes, but overly-simplified.

m Work per call changes.

m We know: the merge algorithm takes O(m) work
to merge a total of m elements.

Merge Sort Recursive Calls

‘ n elements ‘

RIS

m Each level has a total of n elements.

Running Time

m O(n) total time to merge cach level
m O(log n) levels
m Total time for merge sort: O(n-log n)
m Much faster than insertion sort, which takes O(n2).

m In general, no sorting algorithm can do better
than O(n-log n).
m There are some algorithms that are faster for
limited cases.

In-place Sorting

m Merging requires extra storage.
® an extra array with 7 elements (can be reused by all
merges)
m [nsertion sort requires no extra storage (except a few
numeric variables).
m An algorithm that uses at most O(1) extra
storage is called “in-place”.

m [nsertion sort is in-place; merge sort isn’t.

Stable Sorting

m [n merge sort, equal elements are kept in-order.
m Think of sorting a spreadsheet with other columns.

m Rows with equal values in the sort column stay in
order.

m A “stable” sorting algorithm has this properly.

m Our implementations of insertion sort & merge sort
are both stable.

