Sorting

Sorting

m A fundamental problem in computing
® putting a collection of items in order

m Often used as part of another algorithm
m cg. sort then do many binary searches

m cg. looking for identical items in array:
m unsorted: do O(n?) comparisons

m sort (O(?7)) then scan array and do O(n) compatrisons

m There is a sort () function in java.util.Arrays.

Sorting Algorithms

m There are many algorithms for sorting.
m Each has different properties:

m casy/hard to understand

m fast/slow for large lists

m fast/slow for short lists

m fast in all cases/on average

Insertion Sort

m The idea: Build a sorted part of the array by
moving left to right.
m take the next item in the list
m find where it should go (in the sorted part)
® open up a space for it
® put it in its place

m repeat for each item/position

sorted part Examp le
0

1 2 3 4 5 10 11 12
Start: 8 [75]23[14]95

6 7 8 9
29]87]74][-1]2]37]81]

three iterations go by...

0 1 2 3 4 5

Afeee>: MR 145

0 1 2 3 4 5

Find pos: ISR >
S

6 7 8 9 10 11 12
29[87]74] 1] 2]37]81]

6 7 8 9 10 1 12
29]87]74]-1]2]37]81]

6 7 8 9 10 11 12
29[87]74]-1][2]37]81]

0 1 2 3 4 5

Pseudocode

for pos from 1 to n-1:
val = array[pos] // get element pos into place
i =pos-1
while i > 0 and array[i] > val:
array[i+1] = array|i]
e
array[i+1] = val

Example

assume we’ve done pos = 1,2, 3...

0 1 2 3 4 5 6 7 8 9 0 11 12
IR [5 2> 5774 1 2[37[s1]

14 17 23 75

pos = 4
val = 14

i=%]\0

Speed

m requires n-1 passes through the array
® pass [must compare and move up to i elements
® Total maximum comparisons/moves:
142+ ...+ (1) =n(n-1)2=n%2-n/2
m So, insertion sort is order n-squared: O(n?)
m not bad, but there are much faster algorithms

® turns out: insertion sort is generally faster than other
algorithms for small arrays (maybe n<10?)

“Sorting out Sorting”

m 30 min film on sorting algorithms

m Explanation of various sorting algorithms

m Good overview of the ideas the algorithms are
based on.
= Don’t worty too much about the details.

m Tree Sort and Heap Sort require knowledge of tree
data structures: don’t worry if you don’t understand
them.

