Running Time

Speed

- When writing programs, we often want them to be fast.
- Several things affect this:
 - 1. the algorithm implemented
 - 2. the way the algorithm is implemented
 - 3. programming language used
 - 4. capabilities of the system running the program
- We won't worry about 3 or 4.

Implementation

- For a given algorithm, there are many choices in how it's implemented.
 - eg. loop forwards or backwards, order of if conditions, how to split into separate methods, what variables to use, lazy/active boolean operators, ...
 - Some of these will affect the speed of the program.
- No rules here: programming experience helps.
 - so does knowledge of system architecture, compilers, interpreters, language features, ...

Algorithm Analysis

- The inherent running time of the algorithm will almost always overshadow other factors.
 - eg. there's nothing we can do to the Power1 algorithm implementation to make it as fast as Power2
 - \blacksquare ... for large values of y.
 - eg. for sorted arrays, binary search will be faster
 - ... for large arrays, in the worst case.

Measuring Running Time

- To evaluate the efficiency of an algorithm:
 - can't just time it: different implementations, computers, architectures will affect time.
 - need something that will allow us to generalize
- We will count the number of "steps" required
 - ... for an input of "size" n.
- Will be measured in terms of "big-O" notation

Big-O Notation

- Running time will be measured with "big-O" notation.
- Big-O is a way to indicate how fast a function grows.
- eg. "linear search has running time O(n) for an array of length n."
 - indicates that linear search takes about *n* steps

Big-O Rules

- Ignore constants:
 - $O(c \cdot f(n)) = O(f(n))$
- Ignore smaller powers:
 - $O(n^a + n^{a-1}) = O(n^a)$
- Logarithms count less than a power
 - Think of $\log n$ as equivalent to $n^{0.00...01}$
 - $O(n^{a+0.1}) > O(n^a log n) > O(n^a)$
 - \blacksquare eg. O(n log n + n) = O(n log n)
 - $\bullet \text{ eg. } O(n\log n + n^2) = O(n^2)$

Why Big-O?

- Looks at what happens for large inputs
 - Small problems are easy to do quickly
 - Big problems are more interesting.
 - Larger function makes a **huge** difference for large n.
- Ignores irrelevant details
 - Constants and lower-order terms will depend on the implementation
 - Don't worry about that until we've got a good algorithm.

Function Comparison

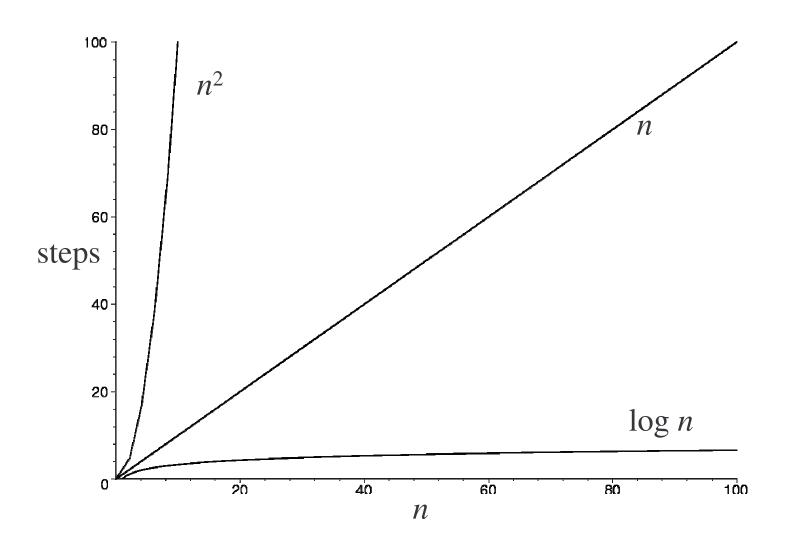
 n^2

n

steps

log n

(printable)



Determining Running Time

- Need to count the number of "steps" taken to complete
 - ... in the worst case
 - \blacksquare ... for input of "size" n.
 - \blacksquare a "step" must take constant (O(1)) time.
- Often:
 - iterations of the inner loop × work per loop
 - recursive calls × work per call

Examples 1

- Linear search:
 - checks each element in the array
 - lacksquare O(n) (or "order n")
- Binary search:
 - Chops array in half with each step.
 - $\blacksquare n \rightarrow n/2 \rightarrow n/4 \rightarrow ... \rightarrow 2 \rightarrow 1$
 - takes $\log n$ steps: $O(\log n)$ (or "order $\log n$ ")

Examples 2

- Power 1: $x^y \rightarrow x \cdot x^{y-1}$
 - \blacksquare Makes y recursive calls: O(y)
- Power 2: $x^y \rightarrow x^{y/2} \cdot x^{y/2}$
 - \blacksquare Makes log y recursive calls: $O(\log y)$
 - Had to be careful to not calculate $x^{y/2}$ twice
 - \blacksquare Would have created an O(y) algorithm
 - Instead, calculated and stored in a variable