Running Time

Speed

m When writing programs, we often want them
to be fast.
m Several things atfect this:
1. the algorithm implemented
2. the way the algorithm is implemented

3. programming language used

4. capabilities of the system running the program

m We won’t worry about 3 or 4.

Implementation

m For a given algorithm, there are many choices in
how i1t’s implemented.

m co. loop forwards or backwards, order of if
conditions, how to split into separate methods, what
variables to use, lazy/active boolean operators, ...

m Some of these will affect the speed of the program.
m No rules here: programming experience helps.

m so does knowledge of system architecture, compilers,
interpreters, language features, ...

Algorithm Analysis

m The inherent running time of the algorithm will
almost always overshadow other factors.
m co. there’s nothing we can do to the Powerl

algorithm implementation to make it as fast as
Power?2

m ... for large values of y.

m co. for sorted arrays, binary search will be faster

m ... for large arrays, in the worst case.

Measuring Running Time

m To evaluate the efficiency of an algorithm:

B can’t just time it: different implementations,
computers, architectures will affect time.

m need something that will allow us to generalize
m We will count the number of “steps” required

m ... for an input of “size” n.

m Will be measured in terms of “big-O” notation

Big-O Notation

m Running time will be measured with “big-O”
notation.

m Big-O is a way to indicate how fast a function
ITOWS.

m co. “linear search has running time O(n) for an
array of length n.”

m indicates that linear search takes about n steps

Big-O Rules

m [onore constants:
B O(c-f(n)) = O(t(n))

m [gnore smaller powers:
m O(n® + n+!) = O(n9)

m | .ogarithms count less than a power
m Think of log n as equivalent to n%99---01
m O(n2t0-1) > O(n?log n) > O(n%)
meg. O(nlog n + n) = O(nlog n)
m eg. O(nlog n + n?) = O(n?)

Why Big-O?

m |.ooks at what happens for large inputs
m Small problems are easy to do quickly
m Big problems are more interesting.

m [Larger function makes a huge ditference for large n.

m [onores irrelevant details

m Constants and lower-order terms will depend on the
implementation

m Don’t worry about that until we’ve got a good
algorithm.

Function Comparison

steps

log n

100

80 -

60 -

steps

40

20+

(printable)

log n

20

40

&0

80

100

Determining Running Time

m Need to count the number of “steps”™ taken to
complete

B ... in the worst case
m ... for input of “size” n.

m 2 “step” must take constant (O(1)) time.

m Often:

m iterations of the inner loop X work per loop

m recursive calls X work per call

Examples 1

m [inear search:
m checks each element in the array
m O(n) (or “order n”)
m Binary search:
m Chops array in half with each step.
mn—n2—-n4—... -2 —1

m takes log n steps: O(log n) (or “order log n”)

Examples 2

m Power 1: x¥ — x-x7!
m Makes y recursive calls: O(y)
m Power 2: x¥ — x¥? . x?
m Makes log y recursive calls: O(log y)

m Had to be careful to not calculate x? twice
m Would have created an O(y) algorithm
m Instead, calculated and stored in a variable

