Arrays

Arrays

® One variable that can hold multiple values.

m Limitations:
m length must be set when declared & can’t change
m can only hold a single type

m thatis...
m can’t lengthen an array mid-program

m can’t store an int and String in the same array

Declaring an Array

m Arrays are objects in Java

m ie. require the declare reference, new object syntax

m To create a pointer to an array, append [] to the

type
m cg. for type int:
int[] myArray;
m Like other reference declarations, this just
creates reference, not object.

Array Objects

m To allocate the memory for the array:

m cg. create array of 100 ints:
new int[100]
m All at once:
int[] myArray = new int[100];

m Creates this:
0o 1 2 99

ower@ LT 1]

Array Elements

m The square brackets are used to subscript.
u cg.
int[] myArray = new int[100];
myArray[0] = 2;
myArray[4] = myArray[0] + 1;
System.out.println (myArray[4]);
// prints 3
myArray[99] = 2; // ok
myArray[100] = 2; // error

Searching




Searching

m Common problem: find an item in an array
® find exact match/find item that contains

m return position/return element

Linear Search

m In general, we have to go through every element
in the array.

m Pscudocode:

for i from O to length-1:

if arrayli] == target:
return i

return -1 // not in array, -1 will indicate that.

m Java implementation in text

Properties

= Will work on any array

m scarches every element: will find the target if it’s
there.

= Slow
m scarches every element

m might not be necessary in some arrays

Binary Search

m Suppose a sorted array.
m then, we can avoid looking at every item.
mcg.
[2]-1]8]14]17]23]29]37[74]75]81[87]95]

m We are looking for 17 in this array.
m Half the array can quickly be eliminated:
m Look in middle: 29

m Can ignore second half of array.

Details

m Keep track of the “candidate” part of the array.

m Look at the middle of the candidate part.
m Found it: done!
= Not found: throw away one half.

m eg.

[2[-1]8[1a]17]23 37 ]74]7581]87]95]
2] ] 2
N

Pseudocode

first=0 // start of candidate array
last = length-1 // end of candidate array
while first < last:
mid = (first + last)/2
if array[mid] = target: return mid
else if array[mid] < target: first = mid + 1
else if array[mid] > target: last = mid — 1
return -1 // not in array




Example, again

first = 0 last = 12 mid = 6
0 1 2 3 4 5 6 7 8 9 10 11 12
[2]-1]8[1a]17]23 37 74]75[81]87]95]

first = 0 last =5 mid =2

0 1 2 3 4 5 6 7 8 9 10 11 12
o 2

first = 3 last = 5 mid = 4

0 1 2 3 4 5 6 7 8 9 10 11 12

return 4

Speed

m binary search
m example took 3 steps
m worst case: 4 (= log, n)
m linear search
m worst case: 13 (= n)
m binary search is much faster for large arrays.

m ... if it can be used: only works on sorted arrays




