Recursion

Recursion Basics

m [t’s possible for code in the body of a method to
call other methods.

B co. In Quadratic, rootl calls discrim,

B There’s no reason a method can’t call itself.

m co. from within a method myFunc, make a call to
mykunc.

m A function that calls itself is called “‘recursive”.

m Hach function call has separate parameters and
local variables.

Why?

m There are many problems that are easy to solve
with recursive algorithms.

m A problem that can be solved in pieces is a
candidate for a recurstve algorithm.
m Chop the problem into one or more smaller parts.
m Recursively solve each part.
m Combine for the whole solution.

m cg. reversing a string: reverse characters 1...end;
result is that + character 0.

Example

class StringRev {
public static String reverse (String s) {

if (s.length() ==) |
return s;
} else {
return reverse(s.substring(l)) + s.charAt (0);
}
}
public static void main(String[] args) {
System.out.println(reverse ("CMPT"));
}
}
m Output:

TPMC

Huh?

reverse ("CMPT") returns reverse ("MPT") + 'C'
/ /
reverse ("MPT") returns reverse ("PT") + 'M'
/ /
reverse ("PT") returns reverse ("T") + 'P!
/

\

returns reverse ("") + 'T'!

__—

returns nmn

N

reverse ("T"

\

-
N

reverse ("'

" TPMC " Oh!
L\ "TPM"

reverse ("CMPT") returns esFeirse{iIMpPHYS + 'C'
/

" TP 1A}
reverse ("MPT") returns eFerset1PHYS + 'M!
/

"T"
reverse ("PT") returns FeFersettH1- + 'P!
/

mnww

returns Feerse(t- + 'T!

returns nmn

\

\

\

N

reverse ("T"

\

-
N

reverse ("'

Understanding Recursion

m ...but you probably shouldn’t worry too much
about those details.

m When trying to understand a recursive
algorithm,
m assume the recursive call(s) return the right thing;

m look at how that result is used to build the whole
result.

Creating Recursion

m The idea: R

1. take the original problem, 5 chars1... == "MPT"

w

2. find smaller subproblem(s), reverse ("MPT") ==

. " TPM "
3. solve subproblem(s) recursively,
4. "TPM" + 'C' ==
4. combine for a full solution. nTPMC

m Find this structure in the problem, and the recursion
is (almost) done.

m Again, don’t worry about the recursive call details.

B Important words: “smaller subproblem”

“Smaller”

m [f the subproblem isn’t strictly smaller, you end

up with infinite recursion:
m The recursive step must

decrease the problem size.

reverse ("CMPT")

v

reverse ("CMPT")
v

reverse ("CMPT")
v

reverse ("CMPT")
v

reverse ("CMPT")
v

reverse ("CMPT")
v

reverse ("CMPT")
L

“Subproblem”

® You must be able to split the problem to make a
recursive call.

m [f the subproblems are always getting smaller, this
can’t continue forever. (good: program will stop)

m Fventually, we can’t split any further: reverse ("")

m This 1s when the recursion stops

m the “base case”

Base Case

m There are typically one or two tiny cases of the
problem that can’t be split for recursion

m The answer in these cases should be obvious.
W cg. reverse("") == ""
m These are handled as special cases in the
recursive function
m if (base case): return the result.

m clse: do recursive thing.

m Pvery input must end with a base case.

More Examples

m Calculate x” for integer y, y = 0

m factorial (n!)

m find prime factorization

m insert spaces between characters in a string
B sum an array

m [inear search an array (later)

m sort an array (later)

Recursive Algorithms

m There could be several ways to “split” to make a
recursive call.

B ... or other non-recursive ways to solve a problem.
m This can have a big etfect on efficiency:.

m co. calculating powers...

Powers, version 1

m subproblem: x” — x-x7-1

m base case: x0 — 1

public static long pow(long x, long vy) {
// return x to the power of vy
it (y == 0) |
return 1;
} else {

return x * pow(x,y—-1);

Powers, version 2

m subproblem: x” — x2-xY? base case: x" — 1

public static long pow(long x, long vy) {

long half;
it (y ==) |
return 1;
} else if (y%2 == 0) { // y even

half = pow(x, y/2);
return half*half;
} else { // y odd
half = pow(x, (y-1)/2);
return half*half*x;

Comparison

m Powerl takes y recursive steps to calculate x”.

m Power?2 takes about log,(y) steps.

m much faster as y gets large

® Running time comparison:

Powerl Power?Z2
pow (1, 10%) |(0.7 s 0.2s
pow (1, 10") |50 0.2s
pow (1, 10°) |out of memory after 2 min |0.2's
pow (1, 10%) |didn’t attempt 0.2s

