Regular Expressions

String Matching

m The problem of finding “a string that looks kind
of like ...” is common.
m c.g. finding useful delimiters in a file, checking for
valid user input, filtering email, ...
m “Regular expressions” are a common tool for
this.
m Most languages support regular expressions.

m c.g. in Java, they can be used to describe valid
delimiters for Scanner (and other places).

Matching

m When you give a regular expression (or “regex”),
you can check a string to see if it “matches” that
pattern.

m c.g. suppose we have a regular expression to
describe the “comma then maybe some
whitespace” delimiters.

m The string ", " would match that regex. So would
"o and ", \n".

m But these wouldn’t: ", ",, " ‘"word"

Note

m The “finite state machines” and “regular
languages” from MACM 101 are closely related.
® They describe the same sets of characters that can be
matched with regular expressions.

m (Regular expression implementations are sometimes
extended to do more than the “regular language”
definition.)

Basics

m When we specified a delimiter:
new Scanner (..) .useDelimiter (",");
m ... the ", " is actually interpreted as a regular
expression.
m Most characters in a regex are used to indicate
“that character must be right here”.
m c.g. the regex "abc" matches only one string: "abc™"
m Literal translation: “an ‘a’, followed by a b’, followed

[PREL]

bya‘c

Repetition

® You can specify “this character repeated some
number of times” in a regular expression.

m e.g. match "wot" or "woot" or "wooot" of ...

m A * says “match zero or more of those.”

m A + says “match one or more of those.”

m e.g. the regex wo+t will match the strings above.

«, ¢

m literal translation: “a ‘w’, followed by one or more
>

‘0’, followed by a ‘t’.

Example

m Read a text file, using “comma and any number
of spaces” as the delimiter.

Scanner filein = new Scanner (

)) a comma, followed by
new File("file.txt") ZEro Oor more spaces

) .useDelimiter (", *‘"\)7

while (filein.hasNext ()) {

System.out.printf (" (%s)", filein.next());

Character Classes

® In our example, we need to be able to match
“any one of the whitespace characters”.

m In a regular expression, several characters can be
enclosed in [...].
® That will match any one of the characters.

m e.g The regex a[123] [45] will match these:

"al4" "al5" "a24" "a25" "a34" "a35"

m “an ‘2’; followed by a 1, 2, or 3; followed by a 4 or 5”

Example

m Read values, separated by a comma, and one
whitespace character:
Scanner filein = new Scanner(..)
.useDelimiter (", [\n\r\t]");
= “Whitespace” technically includes some other
characters, but these are the most common:
space, newline, carriage return, tab.

m java.lang.Character contains the “real”
definition of whitespace.

Example

m We can combine this with repetition to get the
“right” version.
m 2 comma, followed by some (optional) whitespace
Scanner filein = new Scanner(..)
.useDelimiter (", [\n\r\t]*");
m The regex matches “a comma followed by zero
or more spaces, newlines, returns, or tabs.”

m exactly what we were looking for.

More Character Classes

m A character range can be specified
mc.g [0-9] will match any digit.
m A character class can also be “negated”, to
indicate “any character except”.
m Done by inserting a * at the start.
mc.g [~0-9] will match anything except a digit.

mecg [~ \n\r\t] will match any non-whitespace.

Built-In Classes

m Several character classes are predefined, for
common set of characters.
m . (period): any character
= \d: any digit
m \'s:any space
m \p{Lower}: any lowercase character, [a-z]
m These often vary from language to language.

m period is universal, \'s is common; \p{Lower} is
Java-specific (usually it’s [:lower:]).

Examples

m [A-7Z] [a-z]*
m title-case words (“Title”, “I”’; not “word” or “AB”).

\p{Upper}\p{Lower}*

B same as previous

[0-9].%

m A digit, followed by anything (“5 ¢, “234”, “27).
grlealy

m cither “grey’

> >

or “gray’

Other Regex Tricks

m Grouping: parens can group chunks together.
m c.g. (ab)+ matches “ab”, “abab”, “ababab”, ...
meg ([abc] *)+ matches “a”, “ab ¢”, “abc 7, ...

m Optional parts: the question mark
m c.g. ab?c matches only “abc” and “ac”

m c.g. a (be+) 2d matches “ad”, “abed”, “abecccced”,
but not “abd” or “accceed”

® ... and many more options as well.

Other Uses

m Regular expressions can be used for much more
than describing delimiters.

m The Pattern class (in java.util.regex)
contains Java’s regular expression
implementation.

m [t contains static functions that let you do simple
regular expression manipulation.

m ... and you can create Pattern objects that do
more.

In a Scanner...

m Besides separating tokens, a regex can be used to
validate a token when it is read.
m ... by using the .next (regex) method.
m If the next token matches the regex, it is returned.
m InputMismatchException is thrown if not.
m This allows you to quickly make sure the input is
in the right form.

® ... and ensures you don’t continue with invalid
(possibly dangerous) input.

Example

Scanner userin = new Scanner (System.in);
String word;

System.out.print ("Enter a word: "); next token, but only if
try { it contains only letters.
word = userin.next("[A—Za—z]::ii///
System.out.printf (
"That word has %d letters.\n"
word.length());

} catch (InputMismatchException e) {

System.out.println("That wasn't a word.");

Simple String Checking

m The matches function in Pattern takes a
regex and a string to try to match.

m returns a boolean: true if the string matches.

m c.g. previous example could be done without an
exception:
word = userin.next ();
if (matches (" [A-Za-z]+]", word)) { .. // a word

} else { .. // give error message

}

Compiling a Regex

m When you match against a regex, the pattern
must first be analyzed.

m The library does some processing to turn it into
some more-cfficient internal format.

m [t “compiles” the regular expression.

m [t would be inefficient to do this many times
with the same expression.

Compiling a Regex

m If a regex is going to be used many times, it can
be compiled, creating a Pattern object.
m [t is only compiled when the object is created, but
can be used to match many times.
m The function Pattern.compile (regex)
returns a new Pattern object.

Example

Scanner userin = new Scanner (System.in);
Pattern isWord = Pattern.compile (" [A-Za-z]+");
Matcher m;

String word;

System.out.println("Enter some words:");

do {

word

userin.next ();
m = isWord.matcher (word) ;
if (m.matches()) { .. // a word
} else { .. // not a word
}
} while(!word.equals ("done"));

Matchers

® The Matcher object that is created by
patternObj.matcher (str) can doalot
more than just match the whole string.

m give the part of the string that actually matched the
expression

m find substrings that matched parts of the regex
m replace all matches with a new string

m Very useful in programs that do heavy string
manipulation.

