File Input

Reading Files

m We have already seen that writing to files is (can
be?) similar to using System.out.

m Not surprisingly, reading files is similar to using
System.in.
m ... with a few extra wrinkles.

m Again, the classes needed to do this are in
java.io.

The Reader Class

m The Reader class is used to read text.
| i.c. any stream of characters
m [t’s abstract: the parent of many subclasses.
m The counterpart of Writer.
m Provides the read () method.
m reads single characters or character arrays.

m Reads as many characters as it can, up to the array
size.

Reading Files

m The FileReader class is analogous to
FileWriter.
® a subclass of Reader that can work on a file.
m constructor takes a filename as its argument.
meg
Reader filein =

new FileReader ("somefile.txt");

Example

m This reads and prints the first line of the file.
(Create Reader object by giving ﬁlcnamcﬁ
Reader filein = new FileReader ("file.txt");

char ch; we will read character-by-character
— ’

reading a character actually

do { /\ returns an int (more later)

ch = (char) filein.read();
System.out.print (ch);
} while (ch!='\n');

filein.close(); should be closed when finished
A

go until we find a newline

End of File

m When reading from System. in, we just waited
for the user to type more.
m When reading from a file, there might not be
any more file to read.
m Our programs will have to handle the possibility that
we’ve reached the end of the file.
m Different Reader methods have different ways of
signaling the end of file.

End of File in a Reader

m .read(): returns an integer, not a character.
Returns -1 if end of file. Can cast to a character
otherwise.

m .read(char[]): puts characters into the array,
returns the number of characters read; -1 if end
of file.

m So not all of the array will have meaningful contents,
only characters 0 to return value.

Working with Reader

m Makes working with Reader tricky:
Reader filein = new FileReader ("test.txt");
char[] buf = new char([10];

+— read into a char array
int numChars;

while (true) I /\readas much as possible
numChars= filein.read (buf);
if (numChars == -1) { break; }
System.out.print (" ("
+ new String(buf, 0, numChars) + ")");

’ (-
convert characters

EOF when it returns -1:

. 0...numChars-1 to a String
exit loop

Buffered Reading

m Many small reads are also inefficient.

m The operating system typically reads ahead in
the file and stores the next parts in memory.
m “disk cache”

m The BufferedReader class enhances this.

m Read the next part of the file into memory and just
returns it when we try to read more.

m Speedup similar to Buf feredWriter: a few times.

BufferedReader

m Wraps an existing Reader object:
Reader filein = new BufferedReader (
new FileReader ("file.txt"));
m Otherwise works exactly like any other Reader
object.

m ... but faster.

Scanner

m We have already used a Scanner object to wrap
the System.in stream:
Scanner userin = new Scanner (System.in);
m System.in is (almost) a Reader object.

m We can treat any other Reader object the same way.

Example

Construct Scanner with a Reader
m Read (and sum) integers in a file.
Reader filein = new BufferedReader (
new FileReader ("numbers.txt"));

Scanner scanfile = new Scanner (filein);
int total = 0;

[knows how to check for more input
while (scanfile.hasNextInt ()) {

total += scanfile.nextInt ();

} 2~ and convert appropriately

System.out.println(total);

Incorrect Input

m When reading, the input might not be in the
form you expect.

m [f using a plain Reader, you have to process the
characters yourself.

m Whatever logic does this should carefully check
input to make sure it’s in the right form.

m [t should only be accepted if it’s in the right form.

m If not, the program should fail gracefully.

Bad Input and Scanner

m Calling nextWhatever () ona Scanner object
throws an exception if it can’t read the
approptiate type.

m There are different reasons this could happen.

m End of file (NoSuchElementException)

m Data doesn’t look like the corresponding type
(InputMismatchException)
m cg. “abced” having called next Int ()

Bad Input and Scanner

m The hasNextWhatever () methods will tell
you (without an exception) if nextWhatever ()
will succeed.

m Could be false because of end of file or bad input.
m Be careful that that’s what you really want to check.

m c.g. previous example will stop as soon as there

are any non-integers in the file.

Dealing with Bad Input

m For keyboard input, you can ask the user to re-
enter the value.
m When reading a file that isn’t possible.
® You should always consider what the “right” thing
to do is.
m Fail completely? Read data up to that point? Skip to

next line? Skip next character? Ask the user?

m Can be very difficult, depending on the data.

Example

m Read & sum integers, but handle errors.

m On bad input, throw away rest of line and try again.

m We will also catch other checked exceptions.

m main () will no longer have to have a throws

clause.

Example, part 1

m Open file, catch exceptions, init variables:

Reader filein;

try {
filein = new FileReader ("numbers.txt");

} catch (FileNotFoundException e) {
System.err.println("Couldn't open file.");
return; // exit main() & stop program

}

Scanner scanfile = new Scanner (filein);

int total = 0;

boolean done = false;

Example, part 2

while (!done) {

try {
total += scanfile.nextInt ();

} catch (InputMismatchException e) {
// not an integer: eat rest of line
scanfile.nextLine();

} catch (NoSuchElementException e) {
// end of file

done = true;

}
System.out.println(total);

