File Output

So far...

m So far, all of our output has been to
System.out

B ... using .print (), .println(),ofr .printf ()
m All input has been from System.in

B ... using the Scanner class to turn typed characters
into numbers, words, etc.

m These are both special cases of Java’s input/
output capabilities.

java.io

m The java.io package contains classes related
to input and output (I/O).
m to/from the user, files, other code, ...
m [n particular, there are classes that can be used
to read and write data from files.
m There are separate classes for binary and text data.

m We will only be using the text file ones.

Writing Text

m The Writer class is the (abstract) superclass for
character output.

m [t provides methods for sending characters (char[]
or String) to an output stream.

m Then are many subclasses that add more
methods to do output in more useful ways.

m An “output stream” can include anything you
can send characters to.

m Typically a file or the screen.

Writing Text Files

mFileWriter is a subclass of Writer.

B [t connects a character output stream to an actual

file.

m The constructor takes either a File object or a
string with a filename.

m Constructing creates an empty file.
Writer fileout = new
FileWriter ("outfile.txt");

Working with Writer

B You can use the write method to write
characters to the end of the file.

B argument can be a char,a char[], or a String.
Wmcg fileout.write (firstName);
m File must be closed be closed before the
program finishes.
m Ensures that all contents actually make it to the disk.

m cg. fileout.close () ;

Example

Create Writer object
by giving filename >

FileWriter out = new FileWriter ("out.txt");

out .write ("This is my text file.\n");

for(int 1=0; 1<20; 1++) {
out.write(Integer.toString (1)); <
out.write('\n');

\ ‘\ Write some strings

... and individual characters
out.close() ; *~\\\\
Close the file to finish

IOException

m All of the methods on Writer objects can
throw (subclasses of) IOException.
m IOException is a checked exception.

m So, you either have to catch it or declare your
function with throws IOException.

How Disk I/0O Works

m Disks are much slower than the processor or
Mmemory.

m ~10° times: less disk access makes everything faster

m The storage on a disk is divided into “blocks”.
m often 4kB (4096 bytes)
mcan be 1,2, 4, §, 16, ... kilobytes.

m ‘The operating system assigns files to blocks and
keeps track of what files are in what blocks.

Disks

m As the disk spins, the
read /write head scans the
blocks that pass under it.

m To read a particular block,
the head must move to the
right track

m ... and the disk must spin

so the right block 1s under
the head.

m Must read a whole block.

read/write head

0%
%8

a track

So1e]0J YSIP

Disk I/0O

m When the disk reads/writes a particular block,
the head must have moved to the track and the
disk is always spinning.

m So, it’s very easy to read/write the next several
blocks as the spinning continues.

m Therefore, reading or writing large segments of a
file at one time 1s faster.

m We can take advantage of this and combine many
small reads/writes into one.

Convenient Output

m [t’s very common in programs to actually want
to output small chunks of text at a time.

m Small parts of the file are produced in a loop.

m co. single characters, numbers, lines of text.

m But this 1s inefficient.

m [t would be possible, to combine many small writes
into a few large ones.

m But, it would be tricky to get right.

Buffered Output

m The java.io package contains the
BufferedWriter class that does this for us.

m [t collects multiple write () operations in memory
(a “bufter”) and actually sends them in a batch.
m The BufferedWriter “wraps” another
Writer object.
m [t takes a bunch of small writes, stores them in

memory and sends them to the other Writer
together.

Buffered Output

m So, you need two Writer objects to do this:

Your ' :
Buflfered F}le > Disk
Code Writer Writer

m ‘This can be much faster, because there 1s less
disk acccess.

m several times faster, depending on the size of the
original writes.

Using BufferedWriter

m The constructor takes the Writer that’s being

wrapped.
Writer fileout = new FileWriter ("out.txt");
Writer out = new BufferedWriter (fileout);

m Or, more compactly:
Writer out = new BufferedWriter (

new FileWriter ("out.txt"));

m Then, out works like any other Writer.

m ... but faster.

Example

PutaWriter in
RufferedWriter.

BufferediWriter out = new BufferedWriter (4/)

new FileWriter ("output.txt"));

out .write ("This is my text file.\n");

for(int 1=0; 1<20; 1++) |
out.write(Integer.toString(i));
out.write('\n');

}

out.close () ;

Importance of Closing

m Some of the output could be buftered by the
BufferedWriter.

m The last things you’ve written might not have made
it to disk.

m Calling the close () method sends all of the
data to disk.

m Pxiting the program without it might lose data.

Buffering by the OS

m Hven if you’re not using Buf feredWriter, the
operating system may buffer writes.

m Commonly done for speed. Writes are actually done
later, when the disk 1sn’t doing anything else.

m Without the OS’s buffer, BufferedWriter
would make even more of a difference.

m You must still explicitly close even non-buttfered
streams because of these buffers.

Formatted Output

m The basic Writer class doesn’t have the print
methods that we’re used to using.

B The write () method only prints strings.

m [t won’t convert other data types or use toString.
m [or that, you need a PrintWriter object.
m another subclass of Writer.

m adds print (), println (), printf () methods.

m These work like the ones in System. out.

PrintWriter

m Traditionally, PrintWriter worked like
BufferedWriter and wrapped an existing

Writer.

m But buffering 1s still nice, so the declaration
becomes:

PrintWriter out = new PrintWriter (

new BufferedWriter (

new FileWriter ("file.txt")));

PrintWriter

m With Java 5.0, this 1s simplified.

B The constructor can take a filename.

m A Bufferediiriter and FileWriter are
automatically created.

N C.g.
PrintWriter out = new

PrintWriter ("out.txt");

Example

Create a PrintWriter.

PrintWriter out = new 4/)
PrintWriter ("output.txt");

out.println("This 1s my text file.");
for(int 1=0; 1<20; 1++) |

out .printf ("%d\n", 1); <

}

out.close () ; Then use the print

methods that we’re used
to from System.out.

