The Call Stack

The Call Stack

m When function/method calls are made, the
programming language must keep track of who
called who.

m ... and where to jump back to when the functions
are finished.

m This is done with the “call stack”.

m A list of the functions that have been called to get to
the current code.

The Call Stack

m [f a method privateMethod () is running
now, the stack might look like this:

Returning Values

m When functions return a value, it is passed back
to the calling function & the call is removed.

pri od ()

ob 3 ST hod ()

i
e
Y

called

returns

=

main ()

called

returns

_I privateMethod () |
called

S obj.someMethod () |
called

S] doStuff () |
called

<] main () |

Storing

m The call stack is stored in memory by the Java
virtual machine.

m All of the method’s parameters and local
variables and parameters are part of its entry on
the stack.

m This is why recursive calls all run separately:
different calls & variables on the call stack.

Recursion on the Stack

m Since local variables & parameters are stored on
the stack, recursive calls work properly:

binSearch(2,4)

called

binsearch(0,4) |

called

binSearch (0, 8) |

called cach has its own

main ()

NN N

| local variables




Exceptions and the Stack

m When a function throws an exception, that gets
passed up the stack, instead of the return value:

f— throw new SomeException();

privateMethod()

called

SomeException

obj.someMethod ()

called S SomeException

doStuff ()

called

SomeException

main ()

program stops

Stack Display

® When an exception halts the program, the
output is a representation of the call stack.
meg,
Exception in thread "main" SomeException
at MyClass.privateMethod (MyClass. java:8)
at MyClass.someMethod (MyClass.java:56)
at MainProg.doStuff (MainProg. java:31)
at MainProg.main (MainProg.java:127)
m This stack trace corresponds to the previous
example.

Catching Exceptions

m If an exception is caught, its propagation stops
and the function returns as usual:

[—throw new SomeException();

privateMethod ()

called

SomeException

obj.someMethod ()

called S SomeException

doStuff () «— catch (SomeException e)

called

returns normally

main ()

Designing with Exceptions

m An exception should occur if some uncommon

condition occurs that the function can’t handle.
m Shouldn’t happen if all goes well.

m An exception should be used in “exceptional”
circumstances where the function can’t recover
by itself.

m The function should throw an exception.

throw new TypeOfException ("error message");

Designing with Exceptions

m Some function up the call stack should catch
the exception: catch (TypeOfException e) {..}
m Whatever function can actually handle the problem
should do so.
mecg.
m user input function throws InputMismatchException,
menu function catches it and asks for another choice

m network 1O function can’t read web page, main
program pops up error message




