The Call Stack



The Call Stack

m When function/method calls are made, the
programming language must keep track ot who
called who.

m ... and where to jump back to when the functions
are tinished.

m This is done with the “call stack™.

m A list of the functions that have been called to get to
the current code.



The Call Stack

m [f a method privateMethod () is running
now, the stack might look like this:

privateMethod ()

obj.someMethod ()

doStuff ()

mailn ()




Returning Values

m When functions return a value, it 1s passed back
to the calling function & the call is removed.

pri od ()

called < > returns

obj.s thod ()

called < > returns
called < > returns

mailn ()




Storing

m The call stack is stored in memory by the Java
virtual machine.

m All of the method’s parameters and local
variables and parameters are part of its entry on
the stack.

m This 1s why recursive calls all run separately:
different calls & variables on the call stack.



Recursion on the Stack

m Since local variables & parameters are stored on
the stack, recursive calls work propetly:

binSearch (2, 4)

binSearch (0, 4)

binSearch (0, 8)
called < each has its own

local variables

mailn ()




Exceptions and the Stack

m When a function throws an exception, that gets
passed up the stack, instead of the return value:

{— throw new SomeException();

privateMethod ()

called < > SomeException

obj.someMethod ()

called < > SomeException

doStuff ()

called < > SomeException

main ()
wprogram stops




Stack Display

m When an exception halts the program, the
output 1s a representation of the call stack.

mCcgo.

Exception in thread "main" SomeException
at MyClass.privateMethod (MyClass. java:?8)
at MyClass.someMethod (MyClass.java:56)
at MainProg.doStuff (MainProg.java:31)

at MainProg.main (MainProg.java:127)

m This stack trace corresponds to the previous
example.



Catching Exceptions

m [f an exception is caught, its propagation stops
and the function returns as usual:

{— throw new SomeException();

privateMethod ()

called < > SomeException

obj.someMethod ()

called < > SomeException

doStuff () < catch (SomeException e)

called < > returns normally

main ()




Designing with Exceptions

m An exception should occur if some uncommon
condition occurs that the function can’t handle.

m Shouldn’t happen if all goes well.
m An exception should be used in “exceptional”

circumstances where the function can’t recover

by 1tself.

m The function should throw an exception.

throw new TypeOfException("error message");



Designing with Exceptions

m Some function up the call stack should catch
the exception: catch (TypeOfException e) {..}

m Whatever function can actually handle the problem
should do so.

mc.g.

B uscr input function throws InputMismatchException,
menu function catches it and asks for another choice

m network IO function can’t read web page, main
program pops up error message



