Exceptions

Exceptions

m Many problems in the code are handled when
the code 1s compiled, but not all.

m Some are impossible to catch before the
program is run.

m Must run the program to actually determine the
values of variables, get user input, etc.

m These errors that occur when the program is
running are “‘exceptions’ .

Exception Display

m [f an exception isn’t handled by the program, it
halts the program and prints an error:

Exception in thread "main" java.lang.NullPointerException
at SomeClass.method (Someclass.java:54)
at Except.e2 (Except.java:12)

at Except.main (Except.java:22)

m The error message gives the type of exception
that was thrown (NullPointerException)

m ... and the stack trace: list of method calls that
led to the exception

Tracing Problems

m The call stack can be very long and contain
many methods from the libraries

Exception in thread "main" java.util.UnknownFormatConversionException: Conversion = 'i'
at java.util.FormatterS$SFormatSpecifier.conversion (Formatter.java:2603)
at java.util.FormatterSFormatSpecifier.<init> (Formatter.java:2631)
at java.util.Formatter.parse (Formatter.java:2477)
at java.util.Formatter.format (Formatter.java:2411)
at java.io.PrintStream.format (PrintStream.java:899)
at java.io.PrintStream.printf (PrintStream. java:800)
at Except.e3 (Except.java:17)

at Except.main (Except.java:22)

m [t can be tricky to find the “real” cause.

m should be the innermost code that isn’t fully tested.

The Exception Class

m Exceptions 1n Java are objects.

m There 1s a hierarchy ot exception types, with the
Exception class at the top.

m You don’t generally instantiate Exception; one is
automatically created when there is an error.

m (We will instantiate some exceptions later .)

m But, there are many subclasses of Exception
that are used for particular types of errors.

Exception Subclasses

m The subclasses are types that more specifically
identify the problem. eg:

m ArithmeticException: most often caused by a
divide-by-zero.

m IndexOutOfBoundsException: array/List/String
index doesn’t exist.

m NoClassDefFoundError: .class file was there when
compiled, but it gone now.

m Tend to have informative names: useful errors.

Catching Exceptions

m [f an exception occurs, it typically stops the
program.

m ... but it can be “caught” or “handled”.

m [f code might throw an exception, it can be put
in a try block.

m [f it throws an exception, the code in the catch block
1s executed.

try/catch

m HExample:
try A
int x;
x = 10/0;
} catch (Exception e) {

System.out.println("an error occurred");

)
the

b

m [f an exception is thrown in the “try”
“catch’ 1s run.

m otherwise, it 1s not.

The Exception Parameter

m The catch is a little like an else, and a little
like a function definition.
try { .. } catch(Exception e) { .. }

m The argument (“exception parameter”) 1s assigned to
an appropriate Exception object.

m [n the divide-by-zero example, e will be an instance
of ArithmeticException.

m The exception parameter’s value can be ignored
if you don’t need to use it.

Being Specific

m The exception parameter type allows different

types of exceptions to be handled separately:
try {

int x = userin.nextInt () ; <

System.out.println(10/x); <

} catch (ArithmeticException e) {

System.out.println("no zeroes");

asned AJoy1

} catch (InputMismatchException e) {

System.out.println ("enter a number");

Being Specific

m The exception parameter is matched like
arguments to an overloaded function.

m The type of exception thrown is matched against the
exception parametets.

m That class or any subclass will match.
m cg.
m Exception matches all exceptions

m IndexOutOfBoundsException will match both
string and array indexing errors

Being Specific

m [n general, use a type as specific as possible.

m Only catch the exceptions you want to catch/can

handle propetly.

m Don’t incorrectly handle other problems.

m Other exceptions are propagated.

m ... and can be caught by the calling function, or
farther up the call stack.

m i.c. the function call might be in a try that catches
this exception.

Checked Exceptions

m Unchecked exceptions (Runt imeException
and children) can be caught or not.

m Checked exceptions (other children of
Exception) must be handled explicitly.
B ... so their status can be “checked” by the compiler.
m Checked exceptions must either be handled by a

matching catch block, or declared as an
exception that the method might throw.

Checked Exceptions

// Option 1l: catch the checked exception
public void methodl () {
try {
// code that might cause SomeCheckedException

} | catch (SomeCheckedException e) |[{

// whatever

}
// Option 2: this method will send the exception up

public void method2 () |throws SomeCheckedException [{

// code that might cause SomeCheckedException

The throws Clause

m Used to indicate that the method will “handle”
the checked exception by passing it off to the
calling code.

m Similarly, the calling code must either catch it or be
declared indicating that it throws the exception.
public i1nt myMethod(..) throws

Exceptionl, ExceptionZ2 { .. }

m Any uncaught checked exceptions must be listed
in the throws clause.

Throwing Exceptions

m [f your code gets to a situation it can’t handle, 1t
can throw an exception.

m cg. constructor/setter receives illegal value

m Create an instance of the appropriate exception
class:

new SomeException ("Error message");

m Throw the exception with a “throw” statement.

throw new SomeException("no negatives");

Example

m From the Student class:
public void setFirstName (String name) {
1f (name.length () > 0) {
firstName = name;
} else {
throw new IllegalArgumentException

("Name must have length >0");

