Polymorphism

References & Inheritance

m A reference can refer to any object of that type.
m cg. Shape s;
® Now, s can refer to any shape
m ...but classes that inherit Shape are also shapes.
m Remember the “is-a” restriction on the design.
m So, s could also refer to a Circle or Rectangle.

m A big part of why we insist on the “is-a” relationship

References & Inheritance

m Perfectly legal:
Shape sl1;
Rectangle rl = new Rectangle(..);
sl = rl; // all rectangles are shapes
Shape s2 = new Rectangle(..);

Object o = new Circle(..);

m Not okay:
Shape s = new Circle(..);
Rectangle r = s; // not all shapes are
// rectangles.

Compile-Time Checking

m Validity of assignments is checked when the
program compiles, not while it’s running.
m Lets programs run faster; strong typing lets the
compiler catch problems immediately.
m Causes non-obvious restriction:

Shape s = new Rectangle(..);
Is s still a Rectangle?

Rectangle r = s; // not all shapes are
// rectangles.

Casting

m [f you really need to assert a more specific type,
the reference can be cast to the proper type:
Shape s = new Rectangle(..);
Rectangle r = (Rectangle) s;
m Casts should be avoided if possible.
m unavoidable before Java 5.0 since all collections
contained only Object references
m myArrayList.get (0) would always return an
Object and need to be cast to its real type.

Which Method?

m Consider...
Shape s = new Rectangle(..);

String myOutput = ;

m If toString () was defined in Shape and
overridden in Rectangle, which definition is
used?

m s is 2 Shape reference: use the one from Shape.
m s actually refers to a Rectangle instance: use the

one from Rectangle.




Which Method?

m Look at it this way:

Shi
s ﬁ;, Rectangle

+ toString(): String

m The reference is followed to the actual instance.
m The reference is just pointing the to thing we use.
m Jt’s the instance’s method that gets used.

m So in the example, we use the toString from
Rectangle.

Why?

m Lets you used a more generic reference when
needed, but still get the right method.

public void draw(Collection<Shape> shapes) {
for (Shape s: shapes) {
s.draw();
}
}

m Different shapes will have different draw
methods (they look different after all)

m ... but this will use the right one in each case.

Interfaces, again

m Implementing an interface is very similar to
inheriting a class.
class MyClass implements AnInterface { .. }
m ... this takes everything from AnInterface and
puts it into MyClass, just like inheriting.
m Except, all of the methods must be implemented
here.

m No previous implementations to fall back on.

Interfaces vs. Abstract Classes

m Similarities:
m Neither can be instantiated.
m Both can be used as a starting-point for a class.
m Differences:
m A class can contain implementations of methods.

m A class can implement many interfaces, but can only
inherit one class.

m ... in Java. Other languages allow multiple inheritance
and have no interfaces.

Example with Interfaces

m Also works with interfaces:
public boolean startsWith (List<int> 1list,
int wval) {
return list.get (0)==val;
}
m Whether the argument is an ArrayList,

Vector, or LinkedList, this function works.

m uses the . get () method appropriate to the
underlying implementation.

Comparison

m A class can implement

ko] multiple interfaces.
< . .
Interface 8 m No code implementing
= methods allowed.
® m Can’t be instantiated on its own.
)
g . .
g m Can’t be instantiated.
Abstract Class g ® Must be inherited into a non-
é) abstract class to be instantiated.
8 = Can contain implementations.
a.
g
° m or “concrete class”
Non-Abstract Class g m Can be instantiated.
m Can also be inherited.




Similarities

N

Interface ® You can declare a reference to
any of these.
= Any object that implements/
inherits the reference type can
be used for that reference.
> = Any method that is defined by
the reference type can be used.

Abstract Class

m The implementation in the
actual instance will be used

Non-Abstract Class ) when its called.

Example: Coffee

The Problem

m Ordering at a coffee bar.
m Hspresso, mochas, low-fat milk, ...
m Lots of structure, many specific subtypes to make
use of inheritance.
m Suppose we are creating a point-of-sale system
and have to represent the orders taken by the
cashier.

m They will be passed on to those making the drinks.

How hard is this?

1. Cup.
1. shots and size. 5,
=)
3. Syrup. A
4. Milk and other modiiers. 2
S. The drink itself. o
g
I'D LIKE TO HAVE AN £
<
ICED, DECAFE TRIPLE, GRANDE, _CINNAMON, —é
cwr SHOTS AND SIZE swmur &
NONFAT, NO-WHIP _MOCHA s
WILK AND OTHER MODIFIERS  THE DRINK ITSELF ]
©

Stuff to Represent

m Cup (to-go, for-here, iced, personal cup)
m Size (small, medium, large)
m Shots (1 or more espresso shots, caf/decaf)
m default determined by size, but can be changed
m Syrups (0 or more flavour shots)
m Milk, if applicable (whole, 2%, skim, soy)
m Toppings (whipped cream, caramel, ...)
m Drink (espresso shot, Americano, mocha, ...)

Other Stuff

m There’s also a lot of other stuff that doesn’t fall
into these categories.
m blended drinks, juice, teas, ...

m We should make it possible to represent these
t0Oo.

m ... but won’t implement.




Class Hierarchy

Abstract

S~ ‘ Beverage ‘ Separate drink or

f a drink
Aﬁ / part o
[ |2

‘ EspressoBeverage EspressoShot ‘

Americanos DrinkAddition ‘
.

r) ‘ MilkEspressoBeverage }—<>{ Milk ‘

Lattes, Mochas, ...

Implementation...




