Polymorphism

References & Inheritance

m A reference can refer to any object of that type.
B cg. Shape s;
m Now, s can refer to any shape
m ...but classes that inherit Shape are also shapes.
m Remember the “1s-a” restriction on the design.
m So, s could also refer to a Circle or Rectangle.

m A big part of why we 1nsist on the “is-a” relationship

References & Inheritance

m Perfectly legal:

Shape sl1;
Rectangle rl = new Rectangle(..);
sl = rl; // all rectangles are shapes
Shape sZ2 = new Rectangle(..);
Object o = new Circle (..);
m Not okay:
Shape s = new Circle(..);
Rectangle r = s; // not all shapes are

// rectangles.

Compile-Time Checking

m Validity of assignments 1s checked when the
program compiles, not while it’s running.
m [ets programs run faster; strong typing lets the

compiler catch problems immediately.

m Causes non-obvious restriction:

Shape s = new Rectangle(...);
Is s still a Rectangle?

Rectangle r = s; // not all shapes are

// rectangles.

Casting

m If you really need to assert a more specific type,
the reference can be cast to the proper type:

Shape s = new Rectangle(...);

Rectangle r = (Rectangle) s;

m Casts should be avoided if possible.

m unavoldable before Java 5.0 since all collections
contained only Ob ject references

m myArrayList.get (0) would always return an
Obiject and need to be cast to its real type.

Which Method?

m Consider...

Shape s = new Rectangle(...);

String myOutput = |s.toString()|;

m [f toString () was defined in Shape and
overridden in Rectangle, which definition is
used?

m s IS a2 Shape reference: use the one from Shape.

m s actually refers to a Rectangle instance: use the
one from Rectangle.

Which Method?

m [.ook at it this way:

Shape
s: [e > Rectangle

+ toString(): String

m The reference 1s followed to the actual instance.

m The reference 1s just pointing the to thing we use.

m [t’s the instance’s method that gets used.

m So in the example, we use the toString from
Rectangle.

Why?

m [ets you used a more generic reference when

needed, but still get the right method.

public void draw(Collection<Shape> shapes) {
for (Shape s: shapes) {
s.draw () ;

}
}

m Ditferent shapes will have different draw
methods (they look different after all)

m ... but this will use the right one in each case.

Interfaces, again

m Implementing an interface is very similar to
inheriting a class.

class MyClass implements AnInterface { .. }

m ... this takes everything from AnInterface and
puts it into MyClass, just like inheriting.

m Fxcept, all of the methods must be implemented
here.

m No previous implementations to fall back on.

Interfaces vs. Abstract Classes

m Similarities:
m Neither can be instantiated.

m Both can be used as a starting-point for a class.

m Differences:
m A class can contain implementations of method:s.

m A class can implement many interfaces, but can only
inherit one class.

m ... in Java. Other languages allow multiple inheritance
and have no interfaces.

Example with Interfaces

m Also works with interfaces:
public boolean startsWith (List<int> 1list,
int val) {
return list.get (0)==val;

}

m Whether the argument 1s an ArrayList,
Vector, or LinkedList, this function works.

m uses the .get () method appropriate to the
underlying implementation.

Comparison

Interface

Abstract Class

Non-Abstract Class

more implementation, less abstract

A class can implement
multiple interfaces.

No code implementing
methods allowed.

Can’t be instantiated on its own.

Can’t be instantiated.

Must be inherited into a non-
abstract class to be instantiated.
Can contain implementations.

or “concrete class”
Can be instantiated.
Can also be inherited.

Similarities

Interface

Abstract Class

Non-Abstract Class

N\

J

You can declare a reference to
any of these.

Any object that implements/
inherits the reference type can
be used for that reference.

Any method that 1s defined by
the reference type can be used.

The implementation in the
actual instance will be used
when its called.

Example: Coffee

The Problem

m Ordering at a coffee bar.
m Espresso, mochas, low-fat milk, ...

m [ots of structure, many specitfic subtypes to make
use of inheritance.

m Suppose we are creating a point-of-sale system
and have to represent the orders taken by the
cashier.

m They will be passed on to those making the drinks.

How hard is this?

l. Cup.

2. Shots and size.

3. Syrup.

4. Milk and other modifiers.
5. The drink itself.

|'D LIKLE TO HAVE AN

ICED, DECAFE TRIPLE, GRANDE, CINNAMON,

CUP SHOTS AND SIZE SYRUP

NONFAT, NO-WHIP _MOCHA

MILK AND OTHER MODIFIERS THE DRINK ITSELF

© 2005 Starbucks, from “Make it Your Drink”

Stuff to Represent

m Cup (to-go, for-here, iced, personal cup)

m Size (small, medium, large)

m Shots (1 or more espresso shots, caf/decaf)
m default determined by size, but can be changed

m Syrups (0 or more tlavour shots)

m Milk, it applicable (whole, 2%, skim, soy)

m Toppings (whipped cream, caramel, ...)

m Drink (espresso shot, Americano, mocha, ...)

Other Stuff

m There’s also a lot of other stuff that doesn’t fall
into these categories.

m blended drinks, juice, teas, ...

m We should make it possible to represent these
too.

m ... but won’t implement.

-

Americanos, ...

-

Class Hierarchy

Abstract

k—»

EspressoBeverage

AN

MilkEspressoBeverage

Separate drink or
Beverage p

ZN / part of a drink

T -
<> EspressoShot
0... .
—> DrinkAddition
—> Milk

Lattes, Mochas, ...

Implementation...

