Design with
Inheritance

Designing with Inheritance

m Initial design of an object oriented system
should use inheritance where appropriate.
m ... and only where appropriate.
m First requirement: an “Is-A” relationship
class X extends Y {..}
m should be able to say “Every Xisa Y.”

m or “X is a more specific type of Y.”

Reuse

m Inheritance allows easy reuse of code.
m can reuse code from the parent class

m ... or several related classes can inhetit a common
parent

m ook for classes that could be reused in future
work or when expanding the code.
m Move code up in the class hierarchy.

W ... so it can be reused in related classes.

Abstract Classes

m There may be classes in your class hierarchy that
should never be instantiated directly.

m ... but should be subclassed and the children
instantiated.

m cg. Person in the blackjack design, Shape in the
drawing program design.

m These are “abstract classes”.

m classes that are only there to be inherited

Abstract Classes

m Classes can be marked as abstract in Java:
abstract class Shape { .. }
® The Shape class can not be instantiated, but could
be inherited.
m Abstract classes can be specified to explicitly
mark that they are only for code reuse.

Overriding Variables

m [t’s possible to override variable definitions in a
subclass. (“shadow” variables)
m Don’t, unless you really know what you’re doing.

m New definitions (with different type) will also be
used by non-overridden methods.

m Results could be very different than what you
expect, depending on implementation details.

m Defining new variables is okay.

m ... and often necessary to capture new behaviour.




