Java Basics



Compiling

m A “compiler” is a program that translates from
one language to another.

m typically from easy-to-read to fast-to-run
m co. from C or Fortran to assembly code

m Java must be (explicitly) compiled before it can
be run.

m The Java compiler turns Java source code
(.java) into Java bytecode (.class).



The Java Platform

m The Java Virtual Machine (JVM) is responsible

for running Java bytecode.

m The idea: bytecode can be interpreted quickly.

r—

m The same bytecode can be interpreted on any
machine architecture: write once, run anywhere.

m Code (C, C++) compiled to machine code is
specific to an architecture (Windows, Mac,
Linux, ...)

m must be recompiled for each system



The Java Language

.. 1s a high-level programming language
.. 1s very object-oriented.

.. 1s similar to C++ and C.

.. typically compiled to Java bytecode

.. 1s often confused with the Java Platform, but
these are two distinct aspects of “Java”.



Hello World

// hello.java

class HelloWorld {
public static void main (String[] args)
System.out.println("Hello World!");



// hello.java Hell() WOfld

class HelloWorld {
public static void main (String[] args) {
System.out.println("Hello World!");

}
}

m first line is a comment. These are comments in Java:

// comment

/* comment */

m creates a “‘class’ called seliloworid.
m ocnerates a .class file when compiled (Helloworld.class)
m classes are used to create objects... later.

m wrapped in curly braces: { ... }



// hello.java Hell() WOfld

class HelloWorld {
public static void main (String[] args) {
System.out.println("Hello World!");

}
}

B The main function 1s where it starts when run.

B ignore “public static void” and “Stringl]
args’’ for now.

B contains one ‘“‘statement’
m prints the text “Hello World!” on the screen

B the System.out .println function comes from

the Java “class library”

m ends with a semicolon: all statements in Java do.



Compiling & Running

m Create the program hello. java in a text editor.
m Compile:
Javac hello.java

m Run:
jJjava HelloWorld

m Output:
Hello World!



Strong Typing

m Java is a “strongly typed” language.
m All variables and values have a specific type.

m The type is known when the program 1s
compiled: before 1t’s run.

m So, all variables must be declared as having a
particular type.

m declaration must occur before the variable is
used.



Declaring Variables

m syntax for a variable declaration:

<variable declaration> ::= <type> <declarator>, <declarator>, ...;
<declarator> ::= <identifier>
<declarator> ::= <identifier> = <expression>

m built-in types: int, float, String.
m others can be defined (as we’ll see later)

m The optional expression is used to initialize the
variable.

m cxamples:
float length;

int count = 0;

String coursel = new String("CMPT 125");



Primitive Types

int: a subset of the integers from -2°! to 2°'-1

double: a subset of the reals, with approx. 15
significant digits

boolean: either true or false.
...and five others.

some operators are defined on the primitive
types.

mco. + and - for int and double, & forboolean



Variable Assignment

m syntax for variable assignment statement:

<assignment statement> ::= <identifier> = <expression>;

m The type of the expression result must match
the variable type.

m If not, it can be converted...



Type Conversion

m Non-matching types can be converted.
m A “widening conversion” is automatic.

m A “narrowing conversion” must be done explicitly.
m 2 “cast operator’ indicates the conversion
m ... because it might loose information.
| cg.
long longint = 10;
int regint = 20;

longint = regint; // widening

regint = (int) longint; // narrowing



Object Types

m There aren’t many primitive types in Java

m Other types are object types or “classes”.
m typically Capitalized (primitives are lower case)
m Object variables always hold references to an
obiject.

m The declaration only creates a reference, eg.
String course;

m No String exists in memory, just a null
reference.



Object Instances

m We must create a new “instance” of the object
type to store something.

m Fach object type has a “constructor”.

m The constructor creates an “instance” of the type.
course = new String("CMPT 125");

m This creates a new String in memory,
m ... stores the eight characters “CMPT 1257

m ... and the assignment sets course to refer to this
instance.



References and Instances

String course;

course: | *1T—*

new String ("CMPT 125")

CMPT 125

course = new String("CMPT 125")

course: | ® > CMPT 125




