Inheritance

Extending Classes

m [t’s possible to create a class by using another as
a starting point.
m We can take the existing class: add more methods,
change what methods do, etc.
= Allows reuse.

m Can extend a class in several ways, using it for
several different purposes.

m ... based on the same original code.

Extending Classes

m The class that’s being extended is the “parent
class” or “superclass”.
m Contains all behaviour common to its “children”.
m The parent is extended in the “child class” or
“subclass”.
m Additional, specific behaviour added.

m Often a parent is extended in several ways, creating
several children.

Example

m In the blackjack design, we had players and
dealers that were similar.
m Each had a hand, took a turn, etc.
m Put this in a superclass Person.

m Then, the person class can be extended to create
Player and Dealer.

m Code/behaviour that differs between the two is
added as part of the subclass.

Inheriting

m Suppose we have a simple class A:
class A {
private int count;
public int method () {

return 1;

}

® ... and want to create a class B that is A with
another method added...

Inheriting

® Now, B can inherit A and add a new method:
class B extends A {
public int newMethod() {

return 2;

}

® B now has everything from the definitions of A
and B.




Inheriting
. Originally fi A
m Using A and B: nematy from

A myA = new A(); » »
B myB = new B(); Only available in B

’

System.out.print (myA.method())

System.out.print (myB.method());

System.out.print (myB.newMethod());
= Output: 112

® An instance of B also has all members from A.

Parents and Privacy

m Subclasses cannot access private members:
class B extends A { ..
public void setCount (int count) {

this.count = count; ﬁ

Error: count defined as
} private in A; we aren’t in A.

m Just like any other code: it can’t access private
members.

m Must use getters & setters on instance variables.

Constructors

m Constructors are not inherited, but can be added
the same way: Sti
till named after the
class A { .. Y

public A() { class they’re defined in.

count = 1;

}

} count is private: must
class B exte { . use setter to assign.

public B(int n) { /
setCount (n) ;
}

Overriding Methods

m If you want to change the behaviour of a
method, it can be redefined in the subclass
m “overriding”
m Any instances of the child class will use this
implementation, not the parent’s.
m Useful if a method’s behaviour needs to be
different for the specific subclass

m e.g. extra variables updated, different output, ...

Example

m Works for constructors too:
class A {

Same argument
public A() 1 signature, so the
count = 1; original is overridden.

public B() {
setCount (6) ;
}

Accessing the Superclass

m If you need to access something from the
superclass, the super reference gives access.
m Particularly useful for calling overridden methods.

= Common usage:
public void method(int x) { // Overrides
// Extra stuff here.
super.method(x); // Run the superclass
// method too.




Built-In Classes

m [t’s also possible to extend classes from the
standard library.
m Hven if you don’t know the original implementation,
you can still add new methods.
m cg. list with metadata (ArrayList with extra
instance variables); Scanner that can also read in a
custom type.

The Object Class

m The built-in class Object is the “root” of the
class hierarchy.
m A class that doesn’t explicitly “extend” anything has
Object as its superclass.

m ie. these are equivalent:
class Foo {..}

class Foo extends Object {..}

m Object contains some methods (toString,
equals, ...) that are used unless overridden.

When to Inherit

m Inheritance is a very powerful tool in OO
design.
m Easy reuse of code; works naturally with problems
that have a hierarchy of objects.
m Don’t confuse inheritance with aggregation.

m A should inherit B only if “A is a B” or “A is a more
specific version of B” or “A can be substituted for
B”

® ... not just because you need to use the parts of B.

Inheritance in UML

® The inherited class is indicated with a solid line
and open arrow:

Clothing |3 T'Shirt

Example: Shapes

Shapes

m Suppose we want to represent a collection of
shapes (in a drawing program).
m square, rectangle, circle (maybe other later).
m All of these have some things in common:
= position: the xy-coordinate of the shape
m Getters & setters for position.
m translate (x,y): move the shape by this much

m Create a class Shape that implements these.




Subclasses

m Each of these will inherit Shape.

m Rectangle:
m Add instance variables width, height.
m Square:
m Inherit Rectangle and override setters to ensure
width==height.

m Circle:

m Add radius, interpret the position as the centre.

Code Sketch

m The class definitions:
class Shape { ..}

class Rectangle extends Shape { .. }
class Square extends Rectangle { .. }
class Circle extends Shape { .. }

m A square is a specific kind of rectangle, so
we should have the inheritance this way.

B not Rectangle extends Square

(Partial) UML Diagram

Shape
-X,y: double
+translate(x,y:double): void

A
I |

Rectangle Circle
-width,height: double -radius: double
+setSize(width,height:double): void +setRadius(radius:double): void

Square

+setSize(width,height:double): void
+setSize(length:double): void




