Interfaces

Working with a Class

m In order to use a class, you need to understand
the public methods.
® names, parameters, return types, and what they do.
® i.e. once you instantiate, what can you do with it?
® The implementation details are irrelevant to
using the class.

m you don’t have to (and shouldn’t) care about what’s
going on inside, just what it does.

m Critical for separate debugging.

Common Methods

m Classes that represent similar items often share
some common methods.

m c.g. anything that can be sorted must implement the
compareTo () method.

m c.g. all of the “collections” implemention add (x)
[insert new item] and contains (x) [in collection?]

m collections include ArrayList, Vector, Set, ...

m Often, we need “anything with compareTo ().

Interfaces

m An “interface” is a description of public
methods
m ... their names, arguments and return types.
m A class can “implement” several different interfaces.
® The Comparable interface describes the
compareTo () method.

m Sorting requires a class that implements the
Comparable interface.

Abstract Methods

® The methods in an interface are “abstract”.

m They contain no implementation (or body: {...}), just
argument types and return type.

® They must be implemented in any class that
implements the interface.
m So, you can’t instantiate an interface.

m Usage of methods is described, but there is no
definition of their behaviour.

Implementing Interfaces

m The class definition only needs to indicate the
interfaces it implements:
class MyClass implements
Comparable, MyInterface {

}

m ... and then give definitions for the relevant
methods.

Requiring Interfaces

m To specify “any type that implements an
interface” as an argument, use it as a type:
public boolean isLess (Comparable a,

Comparable b) {
return a.compareTo(b) < 0;

}

m Any class that “implements Comparable”
can be used for the arguments to this method.

Interfaces in UML

m Interfaces are easy to spot in UML:

Look! An interface.

<<Interface>>

Comparable k- Integer

+compareTo(other:Object): int J
implements: dotted

line, open-arrowhead

Built-In Interfaces

m The Java standard library contains many
interfaces that can be used.

m In the reference, they are listed along with the classes
in each package.

m Examples:
m Clonable: implements a .clone ()

m Formattable: can be formatted with print £

Collections

m The standard library has several interfaces and
classes for “collections”.

m Collection is a general interface for any type
that can store multiple values.
® Any object ¢ that implements Collection has:
c.add (e)
c.remove (e)

c.size()

Collection Subinterfaces

m Interfaces that are derived from Collection:

m Set: unordered, can’t contain duplicate elements
m c.add (e) does nothing if e already in c.

® List: ordered, duplicates allowed. Adds
methods relevant to ordered collections:
m c.get (1): get element at position i.

m c.set (i,e): set element at position i to e.

Collection Implementations

m Also in the standard library: many good
implementations of these interfaces.

m Lists: ArrayList, Stack, LinkedList
m Sets: HashSet, TreeSet
m Each implementation has some differences.

m different type restrictions, extra methods, running
time for various operations, etc.

Using Interfaces

m The built-in interfaces cover a lot of common
tasks.

m [t’s often useful to formally implement the
corresponding interfaces.
m This allows you to substitute your type anywhere the

interface is required.

m Examples: list stored on-disk instead of in

memory; set from database keys; ...

Example

Pairs

m A class to tepresent a pair of values: (x, y)

m Both values represented with Double.
class Pair {
Double x, y;

public Pair (double x, double y) {
this.x = new Double (x);
this.y = new Double (y);

Comparable 1

m The old way (before Java 5.0): all of the

interfaces specify any object: Comparable to
class Pair implements Comparabiﬁ\i/////anyobﬁct

public int compareTo (Object other) {
Pair otherp = (Pair) other;
if (this.x.equals(otherp.x)) {
return this.y.compareTo (otherp.y);

} else {
return this.x.compareTo (otherp.x);

} L.
} Must cast to a Pair so we can treat it like

} one. Bad if it wasn’ta Pair & can’t be
checked until runtime.

Comparable 2

m The new way (in Java 5.0+): give a type parameter.

Comparable to

class Pair implements Comparable<Pair> { aPair

public int compareTo (Pair other) ({
if (this.x.equals(other.x)) {
return this.y.compareTo (other.y);

} else {
return this.x.compareTo (other.x);

}
) Argument must be a Pair, but

} still satisfies interface.

