Class Relationships



Class Relationships

m [n systems with multiple classes, it can become
difficult to keep track of relationships.

m co. the Student class requires on the Course
class to work.

m There are many ways classes can interact.

m Details of the interactions are part of the design.



Dependancy

m [t’s very common for one class to use another.

m methods use a class to temporarily store/manipulate
information

B an instance variable stores data with another class
m arguments are passed of another class type

B CtC.

m ... any case where a class needs another to
compile or run.



Aggregation

m Special type of dependency.

m A dependant class 1s an aggregate if it 1s “part
of” the larger class.

m ... not just used in the implementation, but really
part of the actual “object”.

m ic. the real object that we’re modeling with the class
has one of these as a part of it.

m co. part of a “hand” 1s a “card”.



Aggregation

m Hxactly what is aggregation?

m Generally: 1f a class 1s used as an instance
variable, it’s an agoregate.

class Player {
Hand h: «— lnstance variable: aggregation

public takeTurn() {
String input; * )

) method variable: dependence,
} but not aggregation



UML Diagrams



UML

m Unified Modeling LLanguage

m ocneral methods to model/design/document
software and other structures

m commonly used to design object-oriented systems
m There are several different types of UML
diagrams.

m ... including “class diagrams™



Class Diagrams

m Diagrams that are used to describe classes and
class relationships

m Represents:

m classes: instance variables, methods (and relevant
types and arguments)

m class relationships: dependence, aggregation, ...



Drawing a Class
type or

| I
return type f class name
COUI‘Se instance

| - name: String variables
frpublic | mark: String
—iprvate - marked: boolgan
methods

+ getMark(): String W,
parameters |+ setMark(mark:String): void

and types

m Some details occasionally omitted (for clarity).

m Not Java syntax: independent of language



Class Relationships

Player
-hand: Hand [<>— Mand
Dealer +drawCard(d:Deck) ------- :
-hand: Hand |<— i
. J Deck <<---
aggoregation: line, )
open-diamond dependence: dashed arrow

m Other arrow types represent other dependencies.

m You won’t be asked to draw these, but they
might be used in future explanations.



Design & UML

m A full UML class diagram gives a lot of
information about the design.

m Creating one requires very careful planning.

m Probably too detailed for initial planning.
m Could be done for low-level design or documenting.

m Often, details will have to change during
implementation, but don’t plan it that way:.

m Our blackjack design isn’t really finished yet.



