Design Example

Requirements

m We will create a program that plays blackjack.
m Dealing:

m The dealer gives each player two cards from the deck
(face-up), and gives himself/herself two (one face-
up, one face-down).

m The total for a hand is counted by summing the
face-value of each card: face cards count 10; aces
count 1 or 11.

m The object is to have card that total to as close to 21
as possible without going over.

Requirements

m Drawing cards:
m Each player gets a turn to draw more cards.

m Hach player may take more cards. If their total goes
over 21, they bust and may not take more.

m The dealer draws last.

m The dealer must take another card if his/her total is
16 or less, and must not if the total is 17 or more.

Requirements

m Winning:
m If a player’s total exceeds 21, they lose.

m If the dealer’s total exceeds 21, all remaining players
win.

m Players whose totals exceed the dealer win.
m Players whose totals are equal to the dealer “push”
(tie).
m Other rules of blackjack will be used to fill in
any gaps in the specified requirements.

Requirements

® The program:
m Users should be able to play a hand of blackjack by
interacting with a text-mode user interface.
m Details of the user interface are left for the designer/
programmer to work out.
= Note: we aren’t wortrying about betting, splitting,
“natural” blackjacks, etc.

Design

Basic design of our

classes for blackjack




Nouns

m Notable nouns from the specification:
m dealer
m player

m card list of cards: part of

m deck / the player/dealer
m hand represent as intcgcr

m total (of the hand)

treat as “take a turn” and
u turn

create a method in player

Card Class

m Each card has its own rank (A, 2,3, ... 9, ], Q,
K) and suit (¢, %, ¥, 4, or spades, clubs, hearts,
diamonds).

m Probably no setters: construct a single card &

doesn’t change after that.

m Constructor will take a suit & rank (do we need
classes for those? Probably just characters.)

m A toString will be nice, so we can print it.

Deck Class

m Basically a list of card objects

m Constructor should build a fresh deck of 52

cards and “shuffle” it.

m Need to be able to “deal” the next card out of

the deck.

m need a method (nextCard?) that returns a card
object, and removes it from the deck.

Player

m Has some cards has he/she has been dealt.
m Store as ArrayList in the player object

m Method to “take turn” where they can draw
some cards from the deck.

m probably don’t need a “dealer” object for this: just
call the deck’s nextCard method.

m Need a method to calculate the total for the
current hand.

Dealer

m Like a player, has some cards in its “hand”.

m Rules for drawing cards more strict than for a
player: 16 yes, 17 no.

® Also should be able to calculate the total.

m Uh-oh: code duplication.

m Dealing with aces (1 or 11) isn’t obvious. Having
the same code in two places would be a maintenance
nightmare.

Duplicated Logic

m Our player and dealer classes both need to
calculate the “value” of a hand.
m Not trivial; we don’t want to copy-and-paste code.
m Possible solutions:

m create a static handvalue function: not very OO

m|create a hand class that holds the cards & this code.
Both players and dealers would have a “hand”.

m inherit from a common ancestor (later)




Hand Class

m Contains a list of card objects.

m Create a method to “draw” a new card into the
hand.

m Method currentValue will calculate the total for
this hand.

m Players and dealers no longer contain a list of
cards: they each contain one hand.

Game Class

m Something we didn’t notice in the description:
we need a class to actually play the game.

m Players join the game; the deal starts; players get
their turns; dealer draws; winners & losers.
® no “turn” object

m Instantiate a “game” and call a play method.

® The main () function will then be very simple.

m good: designing with objects, so keep the logic there.

Class Summary

m Card: simply store rank & suit.
m Deck: collection of (unused) cards.

m Hand: collection of cards; methods to draw and
calculate total

m Player: a hand, and method to take his/her turn
drawing (will include some user interface).

m Dealer: 2 hand, and method to take his/her turn.

m Game: put it all together.

Now...

m We could still have a little more detail in the
design.
m Some key methods of each class, with arguments.
® The implementation seems much less
intimidating now.
m Problem broken into several relatively small parts.

m Each part is roughly independent (or would be if
details of interacting methods were worked out).




