Working with
References

References

m Every object variable in Java is really a reference
to an object.

m Also true when an object is passed as an
argument: a reference to the object is passed to
the function.

m When the object is used, the reference is
“followed” to find the actual object.

The Picture

Student stu = new Student (300012345, "uid");

stu.setFirstName ("Rudiger") ;

Student

stu * studentNumber

firstName: “Rudiger”

lastName: null

: 300012345

Aliases

m Assigning to an object copies the reference, not
the whole object:

Student sl = new Student (300012345, "uid");
sl.setFirstName ("Rudiger");
Student s2 = sl;

Student

sl —¥ studentNumber: 300012345

/ firstName: “Rudiger”

lastName: null

s2

Aliases

m Then, changes to one object will affect both

references:

s2.setFirstName ("Bart") ;

System.out.print (sl.getFirstName());

// prints "Bart"

Student

s1 ——* studentNumber:

/ firstName: “Bar

lastName: null

s2

300012345
e

Copying

m [f we really do want to copy an object, it has to
be done manually.
m Create a new instance and copy the relevant data
ovet.
m Not an issue if there are no methods that modify
the object: no unexpected results from changes.
m ¢eg. the String class

m called “immutable objects” in Python

The clone Method

m Many classes contain a .clone () method.
m This method returns a copy of the object.
m i.c. a new object with the relevant data copied
B ¢g. public Student clone() {
Student s = new Student (
studentNumber, userid);

. // copy rest of the data to s
return s;

Equality and References

® When comparing two objects, the references

are compared, not the object contents.
Student sl
Student s2
Student s3

new Student (300012345, "uid");
new Student (300012345, "uid");
sl;

® Now: sl==s3 && sl!=s2

Student sl Student
s2

300012345 _—"| 300012345

uid s3 uid

The equals Method

m Many classes contain a .equals () method.
m Takes another object of the same type as its
argument.
m Return true if the two objects are “equal”
m ... whatever “equal” means for this type.
m eg.
public boolean equals (Student s) {
return studentNumber==s.studentNumber;

} i \

this instance’s data member other instance’s data member

The compareTo Method

m Used for more general comparison: <, ==, >
m a.compareTo (b) should return:

W a negative int ifa < b

m(0if a==pb

m a positive int ifa > b
m Used by the built-in sorts for objects.

® One call to compareTo gives all the info needed
about relative order.

The “this” Reference

m It is often convenienct/necessaty to explicitly
refer to members of the current object.
| | eg.return studentNumber==other.studentNumber;
m not totally clear where the first studentNumber
comes from.
m There is a special variable this that always
refers to the object that the code is defining.

m previous example is now easier to read:

return this.studentNumber==other.studentNumber;

Specifying Scope with this

m [n methods, we had to be careful to choose
different names for arguments and data
members.

public Student (long stunum) {
studentNumber = stunum; }

m Using this, we can avoid the problem & keep
names consistent:
public Student (long studentNumber) {

this.studentNumber = studentNumber;

}

