Miscellaneous Java

...or “things we should talk about at
some point, and now’s a good time.”

Arrayl.ist

Problems with Arrays

m Array objects must be declared with a fixed size:
int[] myArray = new int[1000];

m This can hold at most 1000 items.
m Trying to use the 1001%* element will cause an error

m Can’t be expanded after declaration.
m Might not need all of the capacity.

B wastes memory

B must keep a separate counter with the number of
real values in the array.

ArraylList

m One of the classes available in the Java library.

m 2 “resizable array” of objects

m some methods implement array-like behaviour:

al.set (0, "abc"); // like array[0] = "abc";
x = al.get (0); // like x = arrayl[0];
1 = al.size(); // like 1 = array.length;

m also allows shortening/lengthening:
al.add("def"); // append to end

al.remove (0); // remove element O

ArraylList

m Arraylist s much more like the Python list type.

m Arraylist can only hold objects
B no primitive types: int, char, etc.

m must specify type when creating: the type is like:
ArraylList<String>

m [f we want to store primitive types, they have to
be somehow “converted” to objects. (later)

m Sce Java docs for ArrayList details.

ArrayList Example

ArrayList<String> al = new ArrayList<String>();

// add some objects
al.add("zero");
al.add("one");
al.add("two") ;
System.out.println(al);

// output: [zero, one, two]

// delete an element
al.remove (1) ;
System.out.println(al);
// output: [zero, two]

Objects — Strings

Printing Objects

m When we print an object...

m Arraylists gives nice output:

[one, two, three]

m but when we print a Student, it’s not so usetul:
Student@82badl

m The Student is using the default method for
printing an object.

B can be overridden

The toString Method

m When System.out.print is given an object, it
calls the objects toString () method.

m ic. Student s = new Student (..);

System.out.print (s);

... makes a call to s.toString () and prints that.

m Student uses the default toString () method.

B ... but we can write our own.

m Arraylist already has a nice toString () method.

toString Example
class Student {

public String toString() {
return Long.toString(studentNumber)
+ ": " + lastName

+ ", " 4+ firstName;

Using toString

m Now, printing a Student will give output like:
300012345: Simpson, Rudiger

m Can also be called manually, outside of a print:
String s = someObject.toString () + "x";
m Many classes from the standard library have
toString methods that can be used (at least)
for debugging.

Wrapper Classes

Wrapper Classes

m An ArrayList can only store objects
m ... not fundamental types (int, char, etc.).

m There are other cases when it would be useful to
treat fundamental types as objects as well.

m For each fundamental type, there is a
corresponding “wrapper class”.

m holds the same info as the type, but does it in an
object.

Example: Integer

m The Integer class is the wrapper for int.
B constructor for Integer can take an int:
Integer 1 = new Integer (234);

m This can then be used as an object:
ArrayList<Integer> al = new

ArrayList<Integer> () ;
al.add (1) ;

m Can be converted back to fundamental type:

int 12 = 1.1intValue ()

Wrapper Classes

m All of the fundamental types have a
corresponding wrapper class:

m Byte, Short, Integer, Long, Float, Double,

Character, Boolean, Voi1d
m The classes also contain static functions to
convert Strings to the corresponding class.

W co. Double d = Double.parseDouble ("1.3");

Overloading Methods

Argument Types

m The print method can take many types as its

afgIHIKﬂltI

System.out .print (16) ; // int

System.out .print (true) ; // boolean
System.out.print ("Hello"); // Object (String)
System.out.print (s); // Object (Student)

B How would we define such a function?
public static void print (??7?);

m must specify a type for the argument: no type will

do.

Ovetloading

m There are actually several ditferent “print”
functions, with different argument types.

public static void print (int 1) { .. }
boolean b) { .. }
String s) { ..}

public static void print
public static void print

(
(
(
public static void print (Object ob3j) { .. }
m An “overloaded” function/method

m The compiler matches the arguments you give with
the functions available.

m Possible because Java 1s strongly typed.

Creating Overloaded Methods

m Only if you have a similar operation to do on
different types...

m Create separate functions for each set of
arguments.

m must have different “signatures”: ditferent
types/numbers of arguments

m The compiler will try match the arguments you give
with the available signatures and “bind” to a
particular definition.

Formatting Output

Formatting Output

m The default output from System.out.print isn’t
always formatted the way we want.

B cg. System.out.println(3.0/7);
W ... output: 0.42857142857142855

m [t’s also hard to combine many values.

m co. produce “3 + 4 = 7”7 from a=3 and b=4.

m Would have to print five things separately:
a, "oy ", b, noo_ n, a+b

The print £ Method

m The System.out.printf method can output
values based on a “format string”.

m like C’s printf and Python’s % operator.
m new In Java 5.0
m co.
System.out.printf ("%d + %$d = %d\n",
a, b, atb);

Format Strings

m A String object, mostly left as-is.

>

m Replacements are marked with a “%”.

m Common types:

sd int, long, ...

st float, double (with decimals)

se float, double (scientific notation)

g float, double (chooses either $f or %e)

String

o\°
n

o\°
o\°

create a %

Format Details

m Can control number of characters printed and
decimal places

mco. $10.2f replacement will take 10 characters and

have 2 decimal places: 34.217
m co. $8d takes 8 characters: 32”7

m Can also control other details

m co. 508d replacement will take 8 characters, padded
with zeroes: “00000032”

String. format

m Another way to do string formatting
m Return a String object, instead of printing to the
screen.
m Use the static function in the String class:
String.format.
m cg.
String s = String.format (
"$d + %d = %d\n", a, b, atb);

String Formatting Examples

m Print powers of 2 in columns:
for(int 1=0; 1<=10; 1++) {
System.out.printf("%$2d %6.0f\n",
1, Math.pow (2, 1));
}

m The toString calculation from Student class:
return String.format ("%$09d: %s. %s",

studentNumber, lastName, firstName);

