Algorithm Analysis

Text Readings: None

CMPT 125/ 128
© Dr. B. Fraser

Topics

07/08/11

1) Algorithm Efficiency & Big-O Notation

07/08/11

Goal based on n

e Goal:

 Algorithms process a set of numbers.
- the number of elements to process.

* Run-times are compared to mathematical functions:

- Iogz(n)
-n
— n2

Algorithm Speed

07/08/11

* Don't solve exactly how long an algorithm takes:
- Too complicated.

- Relies on low-level hardware details.
- Relies on specific details of the implementation.

* So, use rough approximation to...

Example Approximate Function:

an’+bn+c

07/08/11

Big-O

Estimating Big-O

* Example:
- Assume algorithm does an? + bn + ¢ comparisons
* Big-O (Big-Oh) simplifications
1. Uses only the largest term:

For large enough n,
the largest term dwarfs
other terms.

2. Remove constants:

Constants represent how long it
takes on a specific machine.
We want an machine and
language independent measure.

* It's O(n?), or “Big-O of n squared”

» Estimating Process:

- How many iterations of the loop?
- How many times is the loop called?
* Answer is relative to the size of the data set: n.

- “Inner loop is called ~n times, each time it loops
between 1 and n times, so total is O(n?)”

07/08/11

07/08/11

Linear Search Implementation

Insertion Sort Efficiency

/I Find the index of the target element.

/I data: Elements to search.

/I size: Number of elements in data]]

/I target: Value to find.

/I returns: Index of target; -1 for not found.

int linearSearch (int data[], int size, int target)

I/ Cycle through all elements
for (int index = 0; index < size; index ++) {
/[When we find the item, return it's index.
if (data[index] == target) {
return index;

}
Total is ~n
/I ltem not found: Therefore it is
return -1; O(n)

void insertionSort (int data[], int size) {
for (intindex = 1; index < size; index++) {
int key = data[index];
int position = index;

/I Shift larger values to the right
while ((position > 0)
&& (key < data[position-1]))

data[position] = data[position-1];
position--;

/I Put the key into the hole we made) . o
data[position] = key; Total is ~n*n=n
} Therefore it is
} Oo(n?)

—

07/08/11

07/08/11

Why Efficiency Matters

Algorithm Efficiency
4000

/O(nz): Selections and
/ Insertion Sort

3000

[/ ~oo
2500 —n

I / =n*log(n)
2000 / O(n Iog(n)) —n"2

. . — /\3
Some efficient sort algorithms _n
1500 / (heap, meV !

—e™M
1000 / — M
500 :

/ O(n): Linear Search

0 20 40 60 80 100 120 140 160 180 200 OU09(m)

) Binary
n = Size Of Data Search

3500

Comparisons

0

07/08/11 9

Why Efficiency Matters

* Example:
- 10 million elements (n=10,000,000)

- Computer does 1 million comparisons per second.

* Run Times:
- O(log(n)) 0.000023s

- O(n)
- O(n*log(n))
- O(n"2)
- O(n"3) (Horses evolved)
- O(n™4) 10%* seconds
(Universe is 10" seconds old!)
07/08/11 10

Review & Summary

* What is more important:
A faster computer, or a faster algorithm?

» Often gauge an algorithm's efficiency based on the
time it takes to run.

* Big-O is a useful estimate of
the rate a function grows (based on n).

Review Questions

07/08/11 11

¢ This material is not covered in the text.

« List 3 applications where the efficiency of an algorithm
would make a significant difference.

» Graph the following functions for n=1...10,000:
— n2
- 6n’+2n+5
» Use the above graph to argue why Big-O notation is
useful.

07/08/11 12

