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Algorithm Analysis
Text Readings: None

CMPT 125 / 128
� Dr. B. Fraser
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Topics

1) Algorithm Efficiency & Big-O Notation
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Goal based on n

� Goal:
�

� Algorithms process a set of numbers.
� the number of elements to process.

� Run-times are compared to mathematical functions:
� log2(n)
� n
� n2
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Algorithm Speed

� Don't solve exactly how long an algorithm takes:
� Too complicated.
� Relies on low-level hardware details.
� Relies on specific details of the implementation.

� So, use rough approximation to...

an2�bn�c

Example Approximate Function:
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Big-O

� Example: 
� Assume algorithm does an2 + bn + c  comparisons

� Big-O (Big-Oh) simplifications
1. Uses only the largest term:

2. Remove constants:

� It's O(n2), or “Big-O of n squared”

For large enough n, 
the largest term dwarfs 

other terms.

Constants represent how long it 
takes on a specific machine. 

We want an machine and 
language independent measure.
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Estimating Big-O

� Estimating Process:
�

� How many iterations of the loop?
� How many times is the loop called?

� Answer is relative to the size of the data set: n.
� “Inner loop is called ~n times, each time it loops 

between 1 and n times, so total is O(n2)”
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Linear Search Implementation

Total is ~n
Therefore it is

O(n)

// Find the index of the target element. 
// data: Elements to search.
// size: Number of elements in data[]
// target: Value to find.
// returns: Index of target; -1 for not found.
int linearSearch (int data[], int size, int target)
{

// Cycle through all elements
for (int index = 0; index < size; index ++) {

// When we find the item, return it's index.
if (data[index] == target) {

return index;
}

}
// Item not found:
return -1;

}
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Insertion Sort Efficiency

Total is ~n*n = n2

Therefore it is
O(n2)

void insertionSort (int data[], int size) {
for (int index = 1; index < size; index++) {

int key = data[index];
int position = index;

//  Shift larger values to the right
while ( (position > 0)

&& (key < data[position-1]) )
{

data[position] = data[position-1];
position--;

}
// Put the key into the hole we made
data[position] = key;

}
}
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Why Efficiency Matters
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O(log(n))
Binary 
Search

O(n): Linear Search

O(n2): Selections and
Insertion Sort

O(n log(n))
Some efficient sort algorithms 
(heap, merge...)
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Why Efficiency Matters

� Example: 
� 10 million elements (n=10,000,000)
� Computer does 1 million comparisons per second.

� Run Times:
� O(log(n)) 0.000023s
� O(n)
� O(n*log(n))
� O(n^2)
� O(n^3) (Horses evolved)
� O(n^4) 1024 seconds 

(Universe is 1017 seconds old!)
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Review & Summary

� What is more important: 
A faster computer, or a faster algorithm?

� Often gauge an algorithm's efficiency based on the 
time it takes to run.

� Big-O is a useful estimate of 
the rate a function grows (based on n).
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Review Questions

� This material is not covered in the text.
� List 3 applications where the efficiency of an algorithm 

would make a significant difference.
� Graph the following functions for n=1...10,000:

� n2

� 6n2 + 2n + 5
� Use the above graph to argue why Big-O notation is 

useful.


