
07/08/11 1

Algorithm Analysis
Text Readings: None

CMPT 125 / 128
� Dr. B. Fraser

07/08/11 2

Topics

1) Algorithm Efficiency & Big-O Notation

07/08/11 3

Goal based on n

� Goal:
�

� Algorithms process a set of numbers.
� the number of elements to process.

� Run-times are compared to mathematical functions:
� log2(n)
� n
� n2

07/08/11 4

Algorithm Speed

� Don't solve exactly how long an algorithm takes:
� Too complicated.
� Relies on low-level hardware details.
� Relies on specific details of the implementation.

� So, use rough approximation to...

an2�bn�c

Example Approximate Function:

07/08/11 5

Big-O

� Example:
� Assume algorithm does an2 + bn + c comparisons

� Big-O (Big-Oh) simplifications
1. Uses only the largest term:

2. Remove constants:

� It's O(n2), or “Big-O of n squared”

For large enough n,
the largest term dwarfs

other terms.

Constants represent how long it
takes on a specific machine.

We want an machine and
language independent measure.

07/08/11 6

Estimating Big-O

� Estimating Process:
�

� How many iterations of the loop?
� How many times is the loop called?

� Answer is relative to the size of the data set: n.
� “Inner loop is called ~n times, each time it loops

between 1 and n times, so total is O(n2)”

07/08/11 7

Linear Search Implementation

Total is ~n
Therefore it is

O(n)

// Find the index of the target element.
// data: Elements to search.
// size: Number of elements in data[]
// target: Value to find.
// returns: Index of target; -1 for not found.
int linearSearch (int data[], int size, int target)
{

// Cycle through all elements
for (int index = 0; index < size; index ++) {

// When we find the item, return it's index.
if (data[index] == target) {

return index;
}

}
// Item not found:
return -1;

}
07/08/11 8

Insertion Sort Efficiency

Total is ~n*n = n2

Therefore it is
O(n2)

void insertionSort (int data[], int size) {
for (int index = 1; index < size; index++) {

int key = data[index];
int position = index;

// Shift larger values to the right
while ((position > 0)

&& (key < data[position-1]))
{

data[position] = data[position-1];
position--;

}
// Put the key into the hole we made
data[position] = key;

}
}

07/08/11 9

Why Efficiency Matters

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

Algorithm Efficiency

log(n)
n
n*log(n)
n^2
n^3
n^4
e^n
n^n

n = Size Of Data

C

om
pa

ris
on

s

O(log(n))
Binary
Search

O(n): Linear Search

O(n2): Selections and
Insertion Sort

O(n log(n))
Some efficient sort algorithms
(heap, merge...)

07/08/11 10

Why Efficiency Matters

� Example:
� 10 million elements (n=10,000,000)
� Computer does 1 million comparisons per second.

� Run Times:
� O(log(n)) 0.000023s
� O(n)
� O(n*log(n))
� O(n^2)
� O(n^3) (Horses evolved)
� O(n^4) 1024 seconds

(Universe is 1017 seconds old!)

07/08/11 11

Review & Summary

� What is more important:
A faster computer, or a faster algorithm?

� Often gauge an algorithm's efficiency based on the
time it takes to run.

� Big-O is a useful estimate of
the rate a function grows (based on n).

07/08/11 12

Review Questions

� This material is not covered in the text.
� List 3 applications where the efficiency of an algorithm

would make a significant difference.
� Graph the following functions for n=1...10,000:

� n2

� 6n2 + 2n + 5
� Use the above graph to argue why Big-O notation is

useful.

